In this paper we construct, by means of a variational formulation, the solutions of a problem of elastodynamics which includes the effect of damage for the elastic material. The result is a wave equation with time dependent operators which represents the elastic coefficients of the material undergoing damage. The dynamics that we construct also satisfies a threshold condition with the same threshold value that characterizes the quasi-static evolution of damage (see cite{GL}).
We analyze the continuum limit of a thresholding algorithm for motion by mean curvature of one dimensional interfaces in various space-time discrete regimes. The algorithm can be viewed as a time-splitting scheme for the Allen-Cahn equation which is
a typical model for the motion of materials phase boundaries. Our results extend the existing statements which are applicable mostly in semi-discrete (continuous in space and discrete in time) settings. The motivations of this work are twofolds: to investigate the interaction between multiple small parameters in nonlinear singularly perturbed problems, and to understand the anisotropy in curvature for interfaces in spatially discrete environments. In the current work, the small parameters are the the spatial and temporal discretization step sizes $triangle x = h$ and $triangle t = tau$. We have identified the limiting description of the interfacial velocity in the (i) sub-critical ($h ll tau$), (ii) critical ($h = O(tau)$), and (iii) super-critical ($h gg tau$) regimes. The first case gives the classical isotropic motion by mean curvature, while the second produces intricate pinning and de-pinning phenomena and anisotropy in the velocity function of the interface. The last case produces no motion (complete pinning).
We consider the spatially homogeneous Boltzmann equation for ballistic annihilation in dimension d 2. Such model describes a system of ballistic hard spheres that, at the moment of interaction, either annihilate with probability $alpha$ $in$ (0, 1) o
r collide elastically with probability 1 -- $alpha$. Such equation is highly dissipative in the sense that all observables, hence solutions, vanish as time progresses. Following a contribution , by two of the authors, considering well posedness of the steady self-similar profile in the regime of small annihilation rate $alpha$ $ll$ 1, we prove here that such self-similar profile is the intermediate asymptotic attractor to the annihilation dynamics with explicit universal algebraic rate. This settles the issue about universality of the annihilation rate for this model brought in the applied literature.
We study the dynamics of a class of Hamiltonian systems with dissipation, coupled to noise, in a singular (small mass) limit. We derive the homogenized equation for the position degrees of freedom in the limit, including the presence of a {em noise-i
nduced drift} term. We prove convergence to the solution of the homogenized equation in probability and, under stronger assumptions, in an $L^p$-norm. Applications cover the overdamped limit of particle motion in a time-dependent electromagnetic field, on a manifold with time-dependent metric, and the dynamics of nuclear matter.
In the continuum, close connections exist between mean curvature flow, the Allen-Cahn (AC) partial differential equation, and the Merriman-Bence-Osher (MBO) threshold dynamics scheme. Graph analogues of these processes have recently seen a rise in po
pularity as relaxations of NP-complete combinatorial problems, which demands deeper theoretical underpinnings of the graph processes. The aim of this paper is to introduce these graph processes in the light of their continuum counterparts, provide some background, prove the first results connecting them, illustrate these processes with examples and identify open questions for future study. We derive a graph curvature from the graph cut function, the natural graph counterpart of total variation (perimeter). This derivation and the resulting curvature definition differ from those in earlier literature, where the continuum mean curvature is simply discretized, and bears many similarities to the continuum nonlocal curvature or nonlocal means formulation. This new graph curvature is not only relevant for graph MBO dynamics, but also appears in the variational formulation of a discrete time graph mean curvature flow. We prove estimates showing that the dynamics are trivial for both MBO and AC evolutions if the parameters (the time-step and diffuse interface scale, respectively) are sufficiently small (a phenomenon known as freezing or pinning) and also that the dynamics for MBO are nontrivial if the time step is large enough. These bounds are in terms of graph quantities such as the spectrum of the graph Laplacian and the graph curvature. Adapting a Lyapunov functional for the continuum MBO scheme to graphs, we prove that the graph MBO scheme converges to a stationary state in a finite number of iterations. Variations on this scheme have recently become popular in the literature as ways to minimize (continuum) nonlocal total variation.
Let $u^varepsilon$ and $u$ be viscosity solutions of the oscillatory Hamilton-Jacobi equation and its corresponding effective equation. Given bounded, Lipschitz initial data, we present a simple proof to obtain the optimal rate of convergence $mathca
l{O}(varepsilon)$ of $u^varepsilon rightarrow u$ as $varepsilon rightarrow 0^+$ for a large class of convex Hamiltonians $H(x,y,p)$ in one dimension. This class includes the Hamiltonians from classical mechanics with separable potential. The proof makes use of optimal control theory and a quantitative version of the ergodic theorem for periodic functions in dimension $n = 1$.