Effective actions for dual massive (super) p-forms


الملخص بالإنكليزية

In $d$ dimensions, the model for a massless $p$-form in curved space is known to be a reducible gauge theory for $p>1$, and therefore its covariant quantisation cannot be carried out using the standard Faddeev-Popov scheme. However, adding a mass term and also introducing a Stueckelberg reformulation of the resulting $p$-form model, one ends up with an irreducible gauge theory which can be quantised `a la Faddeev and Popov. We derive a compact expression for the massive $p$-form effective action, $Gamma^{(m)}_p$, in terms of the functional determinants of Hodge-de Rham operators. We then show that the effective actions $Gamma^{(m)}_p$ and $Gamma^{(m)}_{d-p-1}$ differ by a topological invariant. This is a generalisation of the known result in the massless case that the effective actions $Gamma_p$ and $Gamma_{d-p-2}$ coincide modulo a topological term. Finally, our analysis is extended to the case of massive super $p$-forms coupled to background ${cal N}=1$ supergravity in four dimensions. Specifically, we study the quantum dynamics of the following massive super $p$-forms: (i) vector multiplet; (ii) tensor multiplet; and (iii) three-form multiplet. It is demonstrated that the effective actions of the massive vector and tensor multiplets coincide. The effective action of the massive three-form is shown to be a sum of those corresponding to two massive scalar multiplets, modulo a topological term.

تحميل البحث