ﻻ يوجد ملخص باللغة العربية
We study the class of functions $f$ on $mathbb{R}$ satisfying a Lipschitz estimate in the Schatten ideal $mathcal{L}_p$ for $0 < p leq 1$. The corresponding problem with $pgeq 1$ has been extensively studied, but the quasi-Banach range $0 < p < 1$ is by comparison poorly understood. Using techniques from wavelet analysis, we prove that Lipschitz functions belonging to the homogeneous Besov class $dot{B}^{frac{1}{p}}_{frac{p}{1-p},p}(mathbb{R})$ obey the estimate $$ |f(A)-f(B)|_{p} leq C_{p}(|f|_{L_{infty}(mathbb{R})}+|f|_{dot{B}^{frac{1}{p}}_{frac{p}{1-p},p}(mathbb{R})})|A-B|_{p} $$ for all bounded self-adjoint operators $A$ and $B$ with $A-Bin mathcal{L}_p$. In the case $p=1$, our methods recover and provide a new perspective on a result of Peller that $f in dot{B}^1_{infty,1}$ is sufficient for a function to be Lipschitz in $mathcal{L}_1$. We also provide related Holder-type estimates, extending results of Aleksandrov and Peller. In addition, we prove the surprising fact that non-constant periodic functions on $mathbb{R}$ are not Lipschitz in $mathcal{L}_p$ for any $0 < p < 1$. This gives counterexamples to a 1991 conjecture of Peller that $f in dot{B}^{1/p}_{infty,p}(mathbb{R})$ is sufficient for $f$ to be Lipschitz in $mathcal{L}_p$.
We show that there are $2^{2^{aleph_0}}$ different closed ideals in the Banach algebra $L(L_p(0,1))$, $1<p ot= 2<infty$. This solves a problem in A. Pietschs 1978 book Operator Ideals. The proof is quite different from other methods of producing clos
In the sequel we establish the Banach Principle for semifinite JW-algebras without direct summand of type I sub 2, which extends the recent results of Chilin and Litvinov on the Banach Principle for semifinite von Neumann algebras to the case of JW-algebras.
This article - a part of a multipaper project investigating arithmetic mean ideals - investigates the codimension of commutator spaces [I, B(H)] of operator ideals on a separable Hilbert space, i.e., ``How many traces can an ideal support? We conject
We show that a Banach space with numerical index one cannot enjoy good convexity or smoothness properties unless it is one-dimensional. For instance, it has no WLUR points in its unit ball, its norm is not Frechet smooth and its dual norm is neither
Famous Naimark-Han-Larson dilation theorem for frames in Hilbert spaces states that every frame for a separable Hilbert space $mathcal{H}$ is image of a Riesz basis under an orthogonal projection from a separable Hilbert space $mathcal{H}_1$ which co