ﻻ يوجد ملخص باللغة العربية
Deep neural networks (DNNs), especially convolutional neural networks, have achieved superior performance on image classification tasks. However, such performance is only guaranteed if the input to a trained model is similar to the training samples, i.e., the input follows the probability distribution of the training set. Out-Of-Distribution (OOD) samples do not follow the distribution of training set, and therefore the predicted class labels on OOD samples become meaningless. Classification-based methods have been proposed for OOD detection; however, in this study we show that this type of method has no theoretical guarantee and is practically breakable by our OOD Attack algorithm because of dimensionality reduction in the DNN models. We also show that Glow likelihood-based OOD detection is breakable as well.
Adversarial examples are inputs with imperceptible perturbations that easily misleading deep neural networks(DNNs). Recently, adversarial patch, with noise confined to a small and localized patch, has emerged for its easy feasibility in real-world sc
Multi-view stereopsis (MVS) tries to recover the 3D model from 2D images. As the observations become sparser, the significant 3D information loss makes the MVS problem more challenging. Instead of only focusing on densely sampled conditions, we inves
We study black-box adversarial attacks for image classifiers in a constrained threat model, where adversaries can only modify a small fraction of pixels in the form of scratches on an image. We show that it is possible for adversaries to generate loc
Convolutional Neural Networks (CNNs) achieved great cognitive performance at the expense of considerable computation load. To relieve the computation load, many optimization works are developed to reduce the model redundancy by identifying and removi
Generative models are popular tools with a wide range of applications. Nevertheless, it is as vulnerable to adversarial samples as classifiers. The existing attack methods mainly focus on generating adversarial examples by adding imperceptible pertur