ترغب بنشر مسار تعليمي؟ اضغط هنا

Design of the New Wideband Vivaldi Feed for the HERA Radio-Telescope Phase II

70   0   0.0 ( 0 )
 نشر من قبل Nicolas Fagnoni
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents the design of a new dual-polarised Vivaldi feed for the Hydrogen Epoch of Reionization Array (HERA) radio-telescope. This wideband feed has been developed to replace the Phase I dipole feed, and is used to illuminate a 14-m diameter dish. It aims to improve the science capabilities of HERA, by allowing it to characterise the redshifted 21-cm hydrogen signal from the Cosmic Dawn as well as from the Epoch of Reionization. This is achieved by increasing the bandwidth from 100 -- 200 MHz to 50 -- 250 MHz, optimising the time response of the antenna - receiver system, and improving its sensitivity. This new Vivaldi feed is directly fed by a differential front-end module placed inside the circular cavity and connected to the back-end via cables which pass in the middle of the tapered slot. We show that this particular configuration has minimal effects on the radiation pattern and on the system response.



قيم البحث

اقرأ أيضاً

This paper summarizes the design process and metrics for the latest antenna design for 2 radio telescopes, SKALA4 for the SKA1-LOW instrument and the V-feed for the HERA telescope. In the paper we briefly describe the main features of the antenna ele ment design and the most important figures of merit for both instruments. Finally, we show the response of both designs against some of these figures of merit.
The Square Kilometre Array (SKA) project is an international effort to build the world s largest radio telescope, enabling science with unprecedented detail and survey speed. The project spans over a decade and is now at a mature stage, ready to ente r the construction and integration phase. In the fully deployed state, the MID-Telescope consists of a 150-km diameter array of offset Gregorian antennas installed in the radio quiet zone of the Karoo desert (South Africa). Each antenna is equipped with three feed packages, that are precision positioned in the sub-reflector focus by a feed indexer platform. The total observational bandwidth (0.35-15.4GHz) is segmented into seven bands. Band 1 (0.35-1.05GHz) and Band 2 (0.95-1.76GHz) are implemented as individual feed packages. The remaining five bands (Bands 3, 4, 5a, 5b, and 6) are combined in a single feed package. Initially only Band 5a (4.6-8.5GHz) and Band 5b (8.3-15.4GHz) will be installed. This paper provides an overview of recent progress on design, test and integration of each feed package as well as project and science goals, timeline and path to construction.
The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a planned interferometric radio telescope array that will ultimately consist of 1024 close packed 6 m dishes that will be deployed at the SKA South Africa site. HIRAX will survey the majority of the southern sky to measure baryon acoustic oscillations (BAO) using the 21 cm hyperfine transition of neutral hydrogen. It will operate between 400-800 MHz with 391 kHz resolution, corresponding to a redshift range of $0.8 < z < 2.5$ and a minimum $Delta z/z$ of ~0.003. One of the primary science goals of HIRAX is to constrain the dark energy equation of state by measuring the BAO scale as a function of redshift over a cosmologically significant range. Achieving this goal places stringent requirements on the mechanical and optical design of the HIRAX instrument which are described in this paper. This includes the simulations used to optimize the instrument, including the dish focal ratio, receiver support mechanism, and instrument cabling. As a result of these simulations, the dish focal ratio has been reduced to 0.23 to reduce inter-dish crosstalk, the feed support mechanism has been redesigned as a wide (35 cm diam.) central column, and the feed design has been modified to allow the cabling for the receiver to pass directly along the symmetry axis of the feed and dish in order to eliminate beam asymmetries and reduce sidelobe amplitudes. The beams from these full-instrument simulations are also used in an astrophysical m-mode analysis pipeline which is used to evaluate cosmological constraints and determine potential systematic contamination due to physical non-redundancies of the array elements. This end-to-end simulation pipeline was used to inform the dish manufacturing and assembly specifications which will guide the production and construction of the first-stage HIRAX 256-element array.
PUMA is a proposal for an ultra-wideband, low-resolution and transit interferometric radio telescope operating at $200-1100,mathrm{MHz}$. Its design is driven by six science goals which span three science themes: the physics of dark energy (measuring the expansion history and growth of the universe up to $z=6$), the physics of inflation (constraining primordial non-Gaussianity and primordial features) and the transient radio sky (detecting one million fast radio bursts and following up SKA-discovered pulsars). We propose two array configurations composed of hexagonally close-packed 6m dish arrangements with 50% fill factor. The initial 5,000 element petite array is scientifically compelling, and can act as a demonstrator and a stepping stone to the full 32,000 element full array. Viewed as a 21cm intensity mapping telescope, the program has the noise equivalent of a traditional spectroscopic galaxy survey comprised of 0.6 and 2.5 billion galaxies at a comoving wavenumber of $k=0.5,hmathrm{Mpc}^{-1}$ spanning the redshift range $z = 0.3 - 6$ for the petite and full configurations, respectively. At redshifts beyond $z=2$, the 21cm technique is a uniquely powerful way of mapping the universe, while the low-redshift range will allow for numerous cross-correlations with existing and upcoming surveys. This program is enabled by the development of ultra-wideband radio feeds, cost-effective dish construction methods, commodity radio-frequency electronics driven by the telecommunication industry and the emergence of sufficient computing power to facilitate real-time signal processing that exploits the full potential of massive radio arrays. The project has an estimated construction cost of 55 and 330 million FY19 USD for the petite and full array configurations. Including R&D, design, operations and science analysis, the cost rises to 125 and 600 million FY19 USD, respectively.
A wide bandwidth, dual polarized, modified four-square antenna is presented as a feed antenna for radio astronomical measurements. A linear array of these antennas is used as a line-feed for cylindrical reflectors for Tianlai, a radio interferometer designed for 21~cm intensity mapping. Simulations of the feed antenna beam patterns and scattering parameters are compared to experimental results at multiple frequencies across the 650 - 1420 MHz range. Simulations of the beam patterns of the combined feed array/reflector are presented as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا