ﻻ يوجد ملخص باللغة العربية
Performing large calculations with a quantum computer will likely require a fault-tolerant architecture based on quantum error-correcting codes. The challenge is to design practical quantum error-correcting codes that perform well against realistic noise using modest resources. Here we show that a variant of the surface code -- the XZZX code -- offers remarkable performance for fault-tolerant quantum computation. The error threshold of this code matches what can be achieved with random codes (hashing) for every single-qubit Pauli noise channel; it is the first explicit code shown to have this universal property. We present numerical evidence that the threshold even exceeds this hashing bound for an experimentally relevant range of noise parameters. Focusing on the common situation where qubit dephasing is the dominant noise, we show that this code has a practical, high-performance decoder and surpasses all previously known thresholds in the realistic setting where syndrome measurements are unreliable. We go on to demonstrate the favourable sub-threshold resource scaling that can be obtained by specialising a code to exploit structure in the noise. We show that it is possible to maintain all of these advantages when we perform fault-tolerant quantum computation.
The development of robust architectures capable of large-scale fault-tolerant quantum computation should consider both their quantum error-correcting codes, and the underlying physical qubits upon which they are built, in tandem. Following this desig
Quantum communication typically involves a linear chain of repeater stations, each capable of reliable local quantum computation and connected to their nearest neighbors by unreliable communication links. The communication rate in existing protocols
State distillation is the process of taking a number of imperfect copies of a particular quantum state and producing fewer better copies. Until recently, the lowest overhead method of distilling states |A>=(|0>+e^{ipi/4}|1>)/sqrt{2} produced a single
We present a comprehensive and self-contained simplified review of the quantum computing scheme of Phys. Rev. Lett. 98, 190504 (2007), which features a 2-D nearest neighbor coupled lattice of qubits, a threshold error rate approaching 1%, natural asy
The surface code is a leading candidate quantum error correcting code, owing to its high threshold, and compatibility with existing experimental architectures. Bravyi et al. (2006) showed that encoding a state in the surface code using local unitary