ترغب بنشر مسار تعليمي؟ اضغط هنا

Pentagon Functions for Scattering of Five Massless Particles

285   0   0.0 ( 0 )
 نشر من قبل Vasily Sotnikov
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We complete the analytic calculation of the full set of two-loop Feynman integrals required for computation of massless five-particle scattering amplitudes. We employ the method of canonical differential equations to construct a minimal basis set of transcendental functions, pentagon functions, which is sufficient to express all planar and nonplanar massless five-point two-loop Feynman integrals in the whole physical phase space. We find analytic expressions for pentagon functions which are manifestly free of unphysical branch cuts. We present a public library for numerical evaluation of pentagon functions suitable for immediate phenomenological applications.



قيم البحث

اقرأ أيضاً

Loop amplitudes for massless five particle scattering processes contain Feynman integrals depending on the external momentum invariants: pentagon functions. We perform a detailed study of the analyticity properties and cut structure of these function s up to two loops in the planar case, where we classify and identify the minimal set of basis functions. They are computed from the canonical form of their differential equations and expressed in terms of generalized polylogarithms, or alternatively as one-dimensional integrals. We present analytical expressions and numerical evaluation routines for these pentagon functions, in all kinematical configurations relevant to five-particle scattering processes.
In PRL 116 (2016) no.6, 062001, the space of planar pentagon functions that describes all two-loop on-shell five-particle scattering amplitudes was introduced. In the present paper we present a natural extension of this space to non-planar pentagon f unctions. This provides the basis for our pentagon bootstrap program. We classify the relevant functions up to weight four, which is relevant for two-loop scattering amplitudes. We constrain the first entry of the symbol of the functions using information on branch cuts. Drawing on an analogy from the planar case, we introduce a conjectural second-entry condition on the symbol. We then show that the information on the function space, when complemented with some additional insights, can be used to efficiently bootstrap individual Feynman integrals. The extra information is read off of Mellin-Barnes representations of the integrals, either by evaluating simple asymptotic limits, or by taking discontinuities in the kinematic variables. We use this method to evaluate the symbols of two non-trivial non-planar five-particle integrals, up to and including the finite part.
We describe a five-dimensional analogue of Wigners operator equation ${mathbb W}_a = lambda P_a$, where ${mathbb W}_a $ is the Pauli-Lubanski vector, $P_a$ the energy-momentum operator, and $lambda$ the helicity of a massless particle. Higher dimensional generalisations are also given.
75 - F.A. Berends , W.T. Giele 1997
In this paper the general form of scattering amplitudes for massless particles with equal spins s ($s s to s s$) or unequal spins ($s_a s_b to s_a s_b$) are derived. The imposed conditions are that the amplitudes should have the lowest possible dimen sion, have propagators of dimension $m^{-2}$, and obey gauge invariance. It is shown that the number of momenta required for amplitudes involving particles with s > 2 is higher than the number implied by 3-vertices for higher spin particles derived in the literature. Therefore, the dimension of the coupling constants following from the latter 3-vertices has a smaller power of an inverse mass than our results imply. Consequently, the 3-vertices in the literature cannot be the first interaction terms of a gauge-invariant theory. When no spins s > 2 are present in the process the known QCD, QED or (super) gravity amplitudes are obtained from the above general amplitudes.
We present a compact analytic expression for the leading colour two-loop five-gluon amplitude in Yang-Mills theory with a single negative helicity and four positive helicities. The analytic result is reconstructed from numerical evaluations over fini te fields. The numerical method combines integrand reduction, integration-by-parts identities and Laurent expansion into a basis of pentagon functions to compute the coefficients directly from six-dimensional generalised unitarity cuts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا