We present the discovery of PSO J083.8371+11.8482, a weak emission line quasar with extreme star formation rate at $z=6.3401$. This quasar was selected from Pan-STARRS1, UHS, and unWISE photometric data. Gemini/GNIRS spectroscopy follow-up indicates a MgII-based black hole mass of $M_mathrm{BH}=left(2.0^{+0.7}_{-0.4}right)times10^9~M_odot$ and an Eddington ratio of $L_mathrm{bol}/L_mathrm{Edd}=0.5^{+0.1}_{-0.2}$, in line with actively accreting supermassive black hole (SMBH) at $zgtrsim6$. HST imaging sets strong constraint on lens-boosting, showing no relevant effect on the apparent emission. The quasar is also observed as a pure point-source with no additional emission component. The broad line region (BLR) emission is intrinsically weak and not likely caused by an intervening absorber. We found rest-frame equivalent widths of EW(Ly$alpha$+NV) $=5.7pm0.7$ Angstrom, EW(CIV) $leq5.8$ Angstrom (3-sigma upper limit), and EW(MgII) $=8.7pm0.7$ Angstrom. A small proximity zone size ($R_mathrm{p}=1.2pm0.4$ pMpc) indicates a lifetime of only $t_mathrm{Q}=10^{3.4pm0.7}$ years from the last quasar phase ignition. ALMA shows extended [CII] emission with a mild velocity gradient. The inferred far-infrared luminosity ($L_mathrm{FIR}=(1.2pm0.1)times10^{13},L_odot$) is one of the highest among all known quasar hosts at $zgtrsim6$. Dust and [CII] emissions put a constraint on the star formation rate of SFR $=900-4900~M_odot,mathrm{yr^{-1}}$, similar to that of hyper-luminous infrared galaxy. Considering the observed quasar lifetime and BLR formation timescale, the weak-line profile in the quasar spectrum is most likely caused by a BLR which is not yet fully formed rather than continuum boosting by gravitational lensing or a soft continuum due to super-Eddington accretion.