ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward the Frontiers of Particle Physics With the Muon $gtextrm{-}2$ Experiment

49   0   0.0 ( 0 )
 نشر من قبل Eremey Valetov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eremey Valetov




اسأل ChatGPT حول البحث

The Muon $gtextrm{-}2$ Experiment (E989) at Fermilab has a goal of measuring the muon anomaly ($a_mu$) with unprecedented precision using positive muons. This measurement is motivated by the difference between the previous Brookhaven $a_mu$ measurement and Standard Model prediction exceeding three standard deviations, which hints at the possibility of physics beyond the Standard Model. Muons are circulated in a storage ring, and the measurement requires a precise determination of the muon anomalous precession frequency (spin precession relative to momentum) from the resulting decay positron time and energy measurements collected with calorimeters. The average magnetic field seen by the muons needs to be known with high precision, and so the storage ring magnetic field is shimmed to be very uniform and is continually monitored with nuclear magnetic resonance (NMR) probes. Detailed Muon Campus beamline and muon storage ring simulations are also required for quantifying beam dynamics and spin-related systematic effects in the determination of the muon anomalous precession frequency, e.g. muon losses during the measurement window. At the time of the conference, the experiment has recently commenced Run-3, and the release of Run-1 physics results is planned for 2020.



قيم البحث

اقرأ أيضاً

The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Ruther ford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.
The Muon Ionization Cooling Experiment (MICE) collaboration seeks to demonstrate the feasibility of ionization cooling, the technique by which it is proposed to cool the muon beam at a future neutrino factory or muon collider. The emittance is measur ed from an ensemble of muons assembled from those that pass through the experiment. A pure muon ensemble is selected using a particle-identification system that can reject efficiently both pions and electrons. The position and momentum of each muon are measured using a high-precision scintillating-fibre tracker in a 4,T solenoidal magnetic field. This paper presents the techniques used to reconstruct the phase-space distributions and reports the first particle-by-particle measurement of the emittance of the MICE Muon Beam as a function of muon-beam momentum.
Starting this summer, Fermilab will host a key experiment dedicated to the search for signals of new physics: The Fermilab Muon g-2 Experiment. Its aim is to precisely measure the anomalous magnetic moment of the muon. In full operation, in order to avoid contamination, the newly born secondary beam is injected into a 505 m long Delivery Ring (DR) wherein it makes several revolutions before being sent to the experiment. Part of the commissioning scenario will execute a running mode wherein the passage from the DR will be skipped. With the aid of numerical simulations, we provide estimates of the expected performance.
High-brightness muon beams of energy comparable to those produced by state-of-the-art electron, proton and ion accelerators have yet to be realised. Such beams have the potential to carry the search for new phenomena in lepton-antilepton collisions t o extremely high energy and also to provide uniquely well-characterised neutrino beams. A muon beam may be created through the decay of pions produced in the interaction of a proton beam with a target. To produce a high-brightness beam from such a source requires that the phase space volume occupied by the muons be reduced (cooled). Ionization cooling is the novel technique by which it is proposed to cool the beam. The Muon Ionization Cooling Experiment collaboration has constructed a section of an ionization cooling cell and used it to provide the first demonstration of ionization cooling. We present these ground-breaking measurements.
This work demonstrates that two systematic errors, coherent betatron oscillations (CBO) and muon losses can be reduced through application of radio frequency (RF) electric fields, which ultimately increases the sensitivity of the muon $g-2$ experimen ts. As the ensemble of polarized muons goes around a weak focusing storage ring, their spin precesses, and when they decay through the weak interaction, $mu^+ rightarrow e^+ u_e bar{ u_mu}$, the decay positrons are detected by electromagnetic calorimeters. In addition to the expected exponential decay in the positron time spectrum, the weak decay asymmetry causes a modulation in the number of positrons in a selected energy range at the difference frequency between the spin and cyclotron frequencies, $omega_text{a}$. This frequency is directly proportional to the magnetic anomaly $a_mu =(g-2)/2$, where $g$ is the g-factor of the muon, which is slightly greater than 2. The detector acceptance depends on the radial position of the muon decay, so the CBO of the muon bunch following injection into the storage ring modulate the measured muon signal with the frequency $omega_text{CBO}$. In addition, the muon populations at the edge of the beam hit the walls of the vacuum chamber before decaying, which also affects the signal. Thus, reduction of CBO and unwanted muon loss increases the $a_mu$ measurement sensitivity. Numerical and experimental studies with RF electric fields yield more than a magnitude reduction of the CBO, with muon losses comparable to the conventional method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا