ترغب بنشر مسار تعليمي؟ اضغط هنا

Reasoning about Goals, Steps, and Temporal Ordering with WikiHow

90   0   0.0 ( 0 )
 نشر من قبل Li Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a suite of reasoning tasks on two types of relations between procedural events: goal-step relations (learn poses is a step in the larger goal of doing yoga) and step-step temporal relations (buy a yoga mat typically precedes learn poses). We introduce a dataset targeting these two relations based on wikiHow, a website of instructional how-to articles. Our human-validated test set serves as a reliable benchmark for commonsense inference, with a gap of about 10% to 20% between the performance of state-of-the-art transformer models and human performance. Our automatically-generated training set allows models to effectively transfer to out-of-domain tasks requiring knowledge of procedural events, with greatly improved performances on SWAG, Snips, and the Story Cloze Test in zero- and few-shot settings.



قيم البحث

اقرأ أيضاً

Modern task-oriented dialog systems need to reliably understand users intents. Intent detection is most challenging when moving to new domains or new languages, since there is little annotated data. To address this challenge, we present a suite of pr etrained intent detection models. Our models are able to predict a broad range of intended goals from many actions because they are trained on wikiHow, a comprehensive instructional website. Our models achieve state-of-the-art results on the Snips dataset, the Schema-Guided Dialogue dataset, and all 3 languages of the Facebook multilingual dialog datasets. Our models also demonstrate strong zero- and few-shot performance, reaching over 75% accuracy using only 100 training examples in all datasets.
Sentence order prediction is the task of finding the correct order of sentences in a randomly ordered document. Correctly ordering the sentences requires an understanding of coherence with respect to the chronological sequence of events described in the text. Document-level contextual understanding and commonsense knowledge centered around these events are often essential in uncovering this coherence and predicting the exact chronological order. In this paper, we introduce STaCK -- a framework based on graph neural networks and temporal commonsense knowledge to model global information and predict the relative order of sentences. Our graph network accumulates temporal evidence using knowledge of `past and `future and formulates sentence ordering as a constrained edge classification problem. We report results on five different datasets, and empirically show that the proposed method is naturally suitable for order prediction. The implementation of this work is publicly available at: https://github.com/declare-lab/sentence-ordering.
Multimodal question answering tasks can be used as proxy tasks to study systems that can perceive and reason about the world. Answering questions about different types of input modalities stresses different aspects of reasoning such as visual reasoni ng, reading comprehension, story understanding, or navigation. In this paper, we use the task of Audio Question Answering (AQA) to study the temporal reasoning abilities of machine learning models. To this end, we introduce the Diagnostic Audio Question Answering (DAQA) dataset comprising audio sequences of natural sound events and programmatically generated questions and answers that probe various aspects of temporal reasoning. We adapt several recent state-of-the-art methods for visual question answering to the AQA task, and use DAQA to demonstrate that they perform poorly on questions that require in-depth temporal reasoning. Finally, we propose a new model, Multiple Auxiliary Controllers for Linear Modulation (MALiMo) that extends the recent Feature-wise Linear Modulation (FiLM) model and significantly improves its temporal reasoning capabilities. We envisage DAQA to foster research on AQA and temporal reasoning and MALiMo a step towards models for AQA.
Everyday conversations require understanding everyday events, which in turn, requires understanding temporal commonsense concepts interwoven with those events. Despite recent progress with massive pre-trained language models (LMs) such as T5 and GPT- 3, their capability of temporal reasoning in dialogs remains largely under-explored. In this paper, we present the first study to investigate pre-trained LMs for their temporal reasoning capabilities in dialogs by introducing a new task and a crowd-sourced English challenge set, TIMEDIAL. We formulate TIME-DIAL as a multiple-choice cloze task with over 1.1K carefully curated dialogs. Empirical results demonstrate that even the best performing models struggle on this task compared to humans, with 23 absolute points of gap in accuracy. Furthermore, our analysis reveals that the models fail to reason about dialog context correctly; instead, they rely on shallow cues based on existing temporal patterns in context, motivating future research for modeling temporal concepts in text and robust contextual reasoning about them. The dataset is publicly available at: https://github.com/google-research-datasets/timedial.
Question: I have five fingers but I am not alive. What am I? Answer: a glove. Answering such a riddle-style question is a challenging cognitive process, in that it requires complex commonsense reasoning abilities, an understanding of figurative langu age, and counterfactual reasoning skills, which are all important abilities for advanced natural language understanding (NLU). However, there are currently no dedicated datasets aiming to test these abilities. Herein, we present RiddleSense, a new multiple-choice question answering task, which comes with the first large dataset (5.7k examples) for answering riddle-style commonsense questions. We systematically evaluate a wide range of models over the challenge, and point out that there is a large gap between the best-supervised model and human performance -- suggesting intriguing future research in the direction of higher-order commonsense reasoning and linguistic creativity towards building advanced NLU systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا