ﻻ يوجد ملخص باللغة العربية
Regression discontinuity (RD) design in a practical context is often contaminated by units behavior to manipulate their treatment assignment. However, we have no formal justification for point identification in such a contaminated RD design. Diagnostic tests have been proposed to detect manipulations, but they do not guarantee identification without some auxiliary assumptions, and the auxiliary assumptions have not been proposed. This study proposes a set of restrictions for possibly manipulated RD designs to validate point identification and diagnostic tests. The same restrictions simultaneously validate worst-case bounds when the diagnostic tests are validated. Therefore, our designs are manipulation robust in testing and identification. The worst-case bounds have two shorter bounds as special cases, and we apply special-case bounds to a controversy regarding the incumbency margin study of the U.S. House of Representatives elections studied in Lee (2008).
In non-experimental settings, the Regression Discontinuity (RD) design is one of the most credible identification strategies for program evaluation and causal inference. However, RD treatment effect estimands are necessarily local, making statistical
We develop a novel method of constructing confidence bands for nonparametric regression functions under shape constraints. This method can be implemented via a linear programming, and it is thus computationally appealing. We illustrate a usage of our
One of the most popular methodologies for estimating the average treatment effect at the threshold in a regression discontinuity design is local linear regression (LLR), which places larger weight on units closer to the threshold. We propose a Gaussi
We study the causal interpretation of regressions on multiple dependent treatments and flexible controls. Such regressions are often used to analyze randomized control trials with multiple intervention arms, and to estimate institutional quality (e.g
This paper provides a method to construct simultaneous confidence bands for quantile functions and quantile effects in nonlinear network and panel models with unobserved two-way effects, strictly exogenous covariates, and possibly discrete outcome va