ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconfigurable Intelligent Surface Aided Wireless Localization

131   0   0.0 ( 0 )
 نشر من قبل Yiming Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The advantages of millimeter-wave and large antenna arrays technologies for accurate wireless localization received extensive attentions recently. However, how to further improve the accuracy of wireless localization, even in the case of obstructed line-of-sight, is largely undiscovered. In this paper, the reconfigurable intelligent surface (RIS) is introduced into the system to make the positioning more accurate. First, we establish the three-dimensional RIS-assisted wireless localization channel model. After that, we derive the Fisher information matrix and the Cramer-Rao lower bound for evaluating the estimation of absolute mobile station position. Finally, we propose an alternative optimization method and a gradient decent method to optimize the reflect beamforming, which aims to minimize the Cramer-Rao lower bound to obtain a more accurate estimation. Our results show that the proposed methods significantly improve the accuracy of positioning, and decimeter-level or even centimeter-level positioning can be achieved by utilizing the RIS with a large number of reflecting elements.



قيم البحث

اقرأ أيضاً

Reconfigurable Intelligent Surface (RIS) is a promising solution to reconfigure the wireless environment in a controllable way. To compensate for the double-fading attenuation in the RIS-aided link, a large number of passive reflecting elements (REs) are conventionally deployed at the RIS, resulting in large surface size and considerable circuit power consumption. In this paper, we propose a new type of RIS, called active RIS, where each RE is assisted by active loads (negative resistance), that reflect and amplify the incident signal instead of only reflecting it with the adjustable phase shift as in the case of a passive RIS. Therefore, for a given power budget at the RIS, a strengthened RIS-aided link can be achieved by increasing the number of active REs as well as amplifying the incident signal. We consider the use of an active RIS to a single input multiple output (SIMO) system. {However, it would unintentionally amplify the RIS-correlated noise, and thus the proposed system has to balance the conflict between the received signal power maximization and the RIS-correlated noise minimization at the receiver. To achieve this goal, it has to optimize the reflecting coefficient matrix at the RIS and the receive beamforming at the receiver.} An alternating optimization algorithm is proposed to solve the problem. Specifically, the receive beamforming is obtained with a closed-form solution based on linear minimum-mean-square-error (MMSE) criterion, while the reflecting coefficient matrix is obtained by solving a series of sequential convex approximation (SCA) problems. Simulation results show that the proposed active RIS-aided system could achieve better performance over the conventional passive RIS-aided system with the same power budget.
The received signal strength (RSS) based technique is extensively utilized for localization in the indoor environments. Since the RSS values of neighboring locations may be similar, the localization accuracy of the RSS based technique is limited. To tackle this problem, in this paper, we propose to utilize reconfigurable intelligent surface (RIS) for the RSS based multi-user localization. As the RIS is able to customize the radio channels by adjusting the phase shifts of the signals reflected at the surface, the localization accuracy in the RIS aided scheme can be improved by choosing the proper phase shifts with significant differences of RSS values among adjacent locations. However, it is challenging to select the optimal phase shifts because the decision function for location estimation and the phase shifts are coupled. To tackle this challenge, we formulate the optimization problem for the RIS-aided localization, derive the optimal decision function, and design the phase shift optimization (PSO) algorithm to solve the formulated problem efficiently. Analysis of the proposed RIS aided technique is provided, and the effectiveness is validated through simulation.
Channel reciprocity greatly facilitates downlink precoding in time-division duplexing (TDD) multiple-input multiple-output (MIMO) communications without the need for channel state information (CSI) feedback. Recently, reconfigurable intelligent surfa ces (RISs) emerge as a promising technology to enhance the performance of future wireless networks. However, since the artificial electromagnetic characteristics of RISs do not strictly follow the normal laws of nature, it brings up a question: does the channel reciprocity hold in RIS-assisted TDD wireless networks? After briefly reviewing the reciprocity theorem, in this article, we show that there still exists channel reciprocity for RIS-assisted wireless networks satisfying certain conditions. We also experimentally demonstrate the reciprocity at the sub-6 GHz and the millimeter-wave frequency bands by using two fabricated RISs. Furthermore, we introduce several RIS-assisted approaches to realizing nonreciprocal channels. Finally, potential opportunities brought by reciprocal/nonreciprocal RISs and future research directions are outlined.
Reconfigurable intelligent surface (RIS) is envisioned to be a promising green technology to reduce the energy consumption and improve the coverage and spectral efficiency of massive multiple-input multiple-output (MIMO) wireless networks. In a RIS-a ided MIMO system, the acquisition of channel state information (CSI) is important for achieving passive beamforming gains of the RIS, but is also challenging due to the cascaded property of the transmitter-RIS-receiver channel and the lack of signal processing capability of the passive RIS elements. The state-of-the-art approach for CSI acquisition in such a system is a pure training-based strategy that depends on a long sequence of pilot symbols. In this paper, we investigate semi-blind cascaded channel estimation for RIS-aided massive MIMO systems, in which the receiver simultaneously estimates the channel coefficients and the partially unknown transmit signal with a small number of pilot sequences. Specifically, we formulate the semi-blind cascaded channel estimation as a trilinear matrix factorization task. Under the Bayesian inference framework, we develop a computationally efficient iterative algorithm using the approximate message passing principle to resolve the trilinear inference problem. Meanwhile, we present an analytical framework to characterize the theoretical performance bound of the proposed approach in the large-system limit via the replica method developed in statistical physics. Extensive simulation results demonstrate the effectiveness of the proposed semi-blind cascaded channel estimation algorithm.
164 - Ming-Min Zhao , An Liu , Rui Zhang 2020
In intelligent reflecting surface (IRS) aided wireless communication systems, channel state information (CSI) is crucial to achieve its promising passive beamforming gains. However, CSI errors are inevitable in practice and generally correlated over the IRS reflecting elements due to the limited training with discrete phase shifts, which degrade the data transmission rate and reliability. In this paper, we focus on investigating the effect of CSI errors to the outage performance in an IRS-aided multiuser downlink communication system. Specifically, we aim to jointly optimize the active transmit precoding vectors at the access point (AP) and passive discrete phase shifts at the IRS to minimize the APs transmit power, subject to the constraints on the maximum CSI-error induced outage probability for the users. First, we consider the single-user case and derive the users outage probability in terms of the mean signal power (MSP) and variance of the received signal at the user. Since there is a trade-off in tuning these two parameters to minimize the outage probability, we propose to maximize their weighted sum with the optimal weight found by one-dimensional search. Then, for the general multiuser case, since the users outage probabilities are difficult to obtain in closed-form due to the inter-user interference, we propose a novel constrained stochastic successive convex approximation (CSSCA) algorithm, which replaces the non-convex outage probability constraints with properly designed convex surrogate approximations. Simulation results verify the effectiveness of the proposed robust beamfoming algorithms and show their significant performance improvement over various benchmark schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا