ترغب بنشر مسار تعليمي؟ اضغط هنا

Inference of dynamic systems from noisy and sparse data via manifold-constrained Gaussian processes

80   0   0.0 ( 0 )
 نشر من قبل Shihao Yang
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Parameter estimation for nonlinear dynamic system models, represented by ordinary differential equations (ODEs), using noisy and sparse data is a vital task in many fields. We propose a fast and accurate method, MAGI (MAnifold-constrained Gaussian process Inference), for this task. MAGI uses a Gaussian process model over time-series data, explicitly conditioned on the manifold constraint that derivatives of the Gaussian process must satisfy the ODE system. By doing so, we completely bypass the need for numerical integration and achieve substantial savings in computational time. MAGI is also suitable for inference with unobserved system components, which often occur in real experiments. MAGI is distinct from existing approaches as we provide a principled statistical construction under a Bayesian framework, which incorporates the ODE system through the manifold constraint. We demonstrate the accuracy and speed of MAGI using realistic examples based on physical experiments.



قيم البحث

اقرأ أيضاً

In this paper, we propose a two-stage method called Spline Assisted Partial Differential Equation involved Model Identification (SAPDEMI) to efficiently identify the underlying partial differential equation (PDE) models from the noisy data. In the fi rst stage -- functional estimation stage -- we employ the cubic spline to estimate the unobservable derivatives, which serve as candidates included the underlying PDE models. The contribution of this stage is that, it is computational efficient because it only requires the computational complexity of the linear polynomial of the sample size, which achieves the lowest possible order of complexity. In the second stage -- model identification stage -- we apply Least Absolute Shrinkage and Selection Operator (Lasso) to identify the underlying PDE models. The contribution of this stage is that, we focus on the model selections, while the existing literature mostly focuses on parameter estimations. Moreover, we develop statistical properties of our method for correct identification, where the main tool we use is the primal-dual witness (PDW) method. Finally, we validate our theory through various numerical examples.
Gaussian processes are distributions over functions that are versatile and mathematically convenient priors in Bayesian modelling. However, their use is often impeded for data with large numbers of observations, $N$, due to the cubic (in $N$) cost of matrix operations used in exact inference. Many solutions have been proposed that rely on $M ll N$ inducing variables to form an approximation at a cost of $mathcal{O}(NM^2)$. While the computational cost appears linear in $N$, the true complexity depends on how $M$ must scale with $N$ to ensure a certain quality of the approximation. In this work, we investigate upper and lower bounds on how $M$ needs to grow with $N$ to ensure high quality approximations. We show that we can make the KL-divergence between the approximate model and the exact posterior arbitrarily small for a Gaussian-noise regression model with $Mll N$. Specifically, for the popular squared exponential kernel and $D$-dimensional Gaussian distributed covariates, $M=mathcal{O}((log N)^D)$ suffice and a method with an overall computational cost of $mathcal{O}(N(log N)^{2D}(loglog N)^2)$ can be used to perform inference.
Ordinary differential equations (ODEs), commonly used to characterize the dynamic systems, are difficult to propose in closed-form for many complicated scientific applications, even with the help of domain expert. We propose a fast and accurate data- driven method, MAGI-X, to learn the unknown dynamic from the observation data in a non-parametric fashion, without the need of any domain knowledge. Unlike the existing methods that mainly rely on the costly numerical integration, MAGI-X utilizes the powerful functional approximator of neural network to learn the unknown nonlinear dynamic within the MAnifold-constrained Gaussian process Inference (MAGI) framework that completely circumvents the numerical integration. Comparing against the state-of-the-art methods on three realistic examples, MAGI-X achieves competitive accuracy in both fitting and forecasting while only taking a fraction of computational time. Moreover, MAGI-X provides practical solution for the inference of partial observed systems, which no previous method is able to handle.
This work proposes a nonparametric method to compare the underlying mean functions given two noisy datasets. The motivation for the work stems from an application of comparing wind turbine power curves. Comparing wind turbine data presents new proble ms, namely the need to identify the regions of difference in the input space and to quantify the extent of difference that is statistically significant. Our proposed method, referred to as funGP, estimates the underlying functions for different data samples using Gaussian process models. We build a confidence band using the probability law of the estimated function differences under the null hypothesis. Then, the confidence band is used for the hypothesis test as well as for identifying the regions of difference. This identification of difference regions is a distinct feature, as existing methods tend to conduct an overall hypothesis test stating whether two functions are different. Understanding the difference regions can lead to further practical insights and help devise better control and maintenance strategies for wind turbines. The merit of funGP is demonstrated by using three simulation studies and four real wind turbine datasets.
Generalized Gaussian processes (GGPs) are highly flexible models that combine latent GPs with potentially non-Gaussian likelihoods from the exponential family. GGPs can be used in a variety of settings, including GP classification, nonparametric coun t regression, modeling non-Gaussian spatial data, and analyzing point patterns. However, inference for GGPs can be analytically intractable, and large datasets pose computational challenges due to the inversion of the GP covariance matrix. We propose a Vecchia-Laplace approximation for GGPs, which combines a Laplace approximation to the non-Gaussian likelihood with a computationally efficient Vecchia approximation to the GP, resulting in a simple, general, scalable, and accurate methodology. We provide numerical studies and comparisons on simulated and real spatial data. Our methods are implemented in a freely available R package.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا