ترغب بنشر مسار تعليمي؟ اضغط هنا

The Massive Ancient Galaxies At $z>3$ NEar-infrared (MAGAZ3NE) Survey: Confirmation of Extremely Rapid Star-Formation and Quenching Timescales for Massive Galaxies in the Early Universe

123   0   0.0 ( 0 )
 نشر من قبل Ben Forrest
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present near-infrared spectroscopic confirmations of a sample of 16 photometrically-selected galaxies with stellar masses log(M_star/M_sun) > 11 at redshift z > 3 from the XMM-VIDEO and COSMOS-UltraVISTA fields using Keck/MOSFIRE as part of the MAGAZ3NE survey. Eight of the ultra-massive galaxies (UMGs) have specific star formation rates (sSFR) < 0.03 Gyr-1, with negligible emission lines. Another seven UMGs show emission lines consistent with active galactic nuclei and/or star formation, while only one UMG has sSFR > 1 Gyr-1. Model star formation histories of these galaxies describe systems that formed the majority of their stars in vigorous bursts of several hundred Myr duration around 4 < z < 6during which hundreds to thousands of solar masses were formed per year. These formation ages of < 1 Gyr prior to observation are consistent with ages derived from measurements of Dn(4000) and EW0(Hdelta). Rapid quenching followed these bursty star-forming periods, generally occurring less than 350 Myr before observation, resulting in post-starburst SEDs and spectra for half the sample. The rapid formation timescales are consistent with the extreme star formation rates observed in 4 < z < 7 dusty starbursts observed with ALMA, suggesting that such dusty galaxies are progenitors of these UMGs. While such formation histories have been suggested in previous studies, the large sample introduced here presents the most compelling evidence yet that vigorous star formation followed by rapid quenching is almost certainly the norm for high mass galaxies in the early universe. The UMGs presented here were selected to be brighter than Ks = 21.7 raising the intriguing possibility that even (fainter) older quiescent UMGs could exist at this epoch.



قيم البحث

اقرأ أيضاً

78 - T. Wang , D. Elbaz , C. Schreiber 2015
We introduce a new color-selection technique to identify high-redshift, massive galaxies that are systematically missed by Lyman-break selection. The new selection is based on the H_{160} and IRAC 4.5um bands, specifically H - [4.5] > 2.25 mag. These galaxies, dubbed HIEROs, include two major populations that can be separated with an additional J - H color. The populations are massive and dusty star-forming galaxies at z > 3 (JH-blue) and extremely dusty galaxies at z < 3 (JH-red). The 350 arcmin^2 of the GOODS-N and GOODS-S fields with the deepest HST/WFC3 and IRAC data contain 285 HIEROs down to [4.5] < 24 mag. We focus here primarily on JH-blue (z > 3) HIEROs, which have a median photometric redshift z ~4.4 and stellar massM_{*}~10^{10.6} Msun, and are much fainter in the rest-frame UV than similarly massive Lyman-break galaxies (LBGs). Their star formation rates (SFRs) reaches ~240 Msun yr^{-1} leading to a specific SFR, sSFR ~4.2 Gyr^{-1}, suggesting that the sSFRs for massive galaxies continue to grow at z > 2 but at a lower growth rate than from z=0 to z=2. With a median half-light radius of 2 kpc, including ~20% as compact as quiescent galaxies at similar redshifts, JH-blue HIEROs represent perfect star-forming progenitors of the most massive (M_{*} > 10^{11.2} Msun) compact quiescent galaxies at z ~ 3 and have the right number density. HIEROs make up ~60% of all galaxies with M_{*} > 10^{10.5} Msun identified at z > 3 from their photometric redshifts. This is five times more than LBGs with nearly no overlap between the two populations. While HIEROs make up 15-25% of the total SFR density at z ~ 4-5, they completely dominate the SFR density taking place in M_{*} >10^{10.5} Msun galaxies, and are therefore crucial to understanding the very early phase of massive galaxy formation.
116 - Fernando Buitrago 2008
We measure and analyse the sizes of 82 massive (M >= 10^11 M_Sun) galaxies at 1.7<z<3 utilizing deep HST NICMOS data taken in the GOODS North and South fields. Our sample provides the first statistical study of massive galaxy sizes at z>2. We split o ur sample into disk-like (Sersic index n<=2) and spheroid-like (Sersic index n>2) galaxies, and find that at a given stellar mass, disk-like galaxies at z~2.3 are a factor of 2.6+/-0.3 smaller than present day equal mass systems, and spheroid-like galaxies at the same redshift are 4.3+/-0.7 times smaller than comparatively massive elliptical galaxies today. We furthermore show that the stellar mass densities of very massive galaxies at z~2.5 are similar to present-day globular clusters with values ~2x10^10 M_Sun kpc^-3
We present a Bayesian full-spectral-fitting analysis of 75 massive ($M_* > 10^{10.3} M_odot$) UVJ-selected galaxies at redshifts of $1.0 < z < 1.3$, combining extremely deep rest-frame ultraviolet spectroscopy from VANDELS with multi-wavelength photo metry. By the use of a sophisticated physical plus systematic uncertainties model, constructed within the Bagpipes code, we place strong constraints on the star-formation histories (SFHs) of individual objects. We firstly constrain the stellar mass vs stellar age relationship, finding a steep trend towards earlier average formation with increasing stellar mass of $1.48^{+0.34}_{-0.39}$ Gyr per decade in mass, although this shows signs of flattening at $M_* > 10^{11} M_odot$. We show that this is consistent with other spectroscopic studies from $0 < z < 2$. This relationship places strong constraints on the AGN-feedback models used in cosmological simulations. We demonstrate that, although the relationships predicted by Simba and IllustrisTNG agree well with observations at $z=0.1$, they are too shallow at $z=1$, predicting an evolution of $<0.5$ Gyr per decade in mass. Secondly, we consider the connections between green-valley, post-starburst and quiescent galaxies, using our inferred SFH shapes and the distributions of galaxy physical properties on the UVJ diagram. The majority of our lowest-mass galaxies ($M_* sim 10^{10.5} M_odot$) are consistent with formation in recent ($z<2$), intense starburst events, with timescales of $lesssim500$ Myr. A second class of objects experience extended star-formation epochs before rapidly quenching, passing through both green-valley and post-starburst phases. The most massive galaxies in our sample are extreme systems: already old by $z=1$, they formed at $zsim5$ and quenched by $z=3$. However, we find evidence for their continued evolution through both AGN and rejuvenated star-formation activity.
We explore how the estimated star formation rate (SFR) of a sample of isolated, massive dusty star-forming galaxies at early cosmic epochs ($1.5 < z < 3.5$) changes when their ultraviolet (UV) to near-infrared (NIR) spectral energy distribution is ex tended to longer wavelengths by adding far-infrared/sub-millimeter data to trace the reprocessed radiation from dust heated by young massive stars. We use large-area surveys with multi-wavelength datasets that include DECam UV-to-optical, VICS82 NIR, Spitzer-IRAC NIR, and Herschel-SPIRE far-infrared/sub-millimeter data. We find that the inclusion of far-infrared/sub-millimeter data leads to SFRs that span $sim$100-3500 $M_{odot} yr^{-1}$ and are higher than the extinction-corrected UV-based SFR by an average factor of $sim$3.5, and by a factor of over 10 in many individual galaxies. Our study demonstrates the importance of far-IR/sub-millimeter data for deriving accurate SFRs in massive dusty galaxies at early epochs, and underscores the need for next-generation far-IR/sub-millimeter facilities with high sensitivity, field of view, and angular resolution.
We investigate the stellar populations for a sample of 161 massive, mainly quiescent galaxies at $langle z_{rm obs} rangle=0.8$ with deep Keck/DEIMOS rest-frame optical spectroscopy (HALO7D survey). With the fully Bayesian framework Prospector, we si multaneously fit the spectroscopic and photometric data with an advanced physical model (including non-parametric star-formation histories, emission lines, variable dust attenuation law, and dust and AGN emission) together with an uncertainty and outlier model. We show that both spectroscopy and photometry are needed to break the dust-age-metallicity degeneracy. We find a large diversity of star-formation histories: although the most massive ($M_{star}>2times10^{11}~M_{odot}$) galaxies formed the earliest (formation redshift of $z_{rm f}approx5-10$ with a short star-formation timescale of $tau_{rm SF}lesssim1~mathrm{Gyr}$), lower-mass galaxies have a wide range of formation redshifts, leading to only a weak trend of $z_{rm f}$ with $M_{star}$. Interestingly, several low-mass galaxies with have formation redshifts of $z_{rm f}approx5-8$. Star-forming galaxies evolve about the star-forming main sequence, crossing the ridgeline several times in their past. Quiescent galaxies show a wide range and continuous distribution of quenching timescales ($tau_{rm quench}approx0-5~mathrm{Gyr}$) with a median of $langletau_{rm quench}rangle=1.0_{-0.9}^{+0.8}~mathrm{Gyr}$ and of quenching epochs of $z_{rm quench}approx0.8-5.0$ ($langle z_{rm quench}rangle=1.3_{-0.4}^{+0.7}$). This large diversity of quenching timescales and epochs points toward a combination of internal and external quenching mechanisms. In our sample, rejuvenation and late bloomers are uncommon. In summary, our analysis supports the grow & quench framework and is consistent with a wide and continuously-populated diversity of quenching timescales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا