ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice dynamics in the double-helix antiferromagnet FeP

71   0   0.0 ( 0 )
 نشر من قبل Aleksandr Sukhanov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive investigation of lattice dynamics in the double-helix antiferromagnet FeP by means of high-resolution time-of-flight neutron spectroscopy and ab-initio calculations. Phonons can hybridize with the magnetic excitations in noncollinear magnets to significantly influence their properties. We observed a rich spectrum of phonon excitations, which extends up to $sim$50 meV. We performed detailed analysis of the observed and calculated spectra for all high-symmetry points and high-symmetry directions of the Brillouin zone. We show that the DFT calculations quantitatively capture the essential features of the observed phonons, including both dispersions and scattering intensities. By making use of the detailed intensity comparison between the theory and the data, we were able to identify displacement vectors for the majority of the observed modes. The overall excellent agreement between the DFT predictions and the experimental results breaks down for the lowest mode at the $Y$-point, whose energy is lower than calculated by $sim$13%. The present study provides vital information on the lattice dynamics in FeP and demonstrates applicability of the DFT to novel pressure-induced phenomena in related materials, such as MnP and CrAs.



قيم البحث

اقرأ أيضاً

121 - J. Schnack 2019
We present numerical evidence for the crystallization of magnons below the saturation field at non-zero temperatures for the highly frustrated spin-half kagome Heisenberg antiferromagnet. This phenomenon can be traced back to the existence of indepen dent localized magnons or equivalently flat-band multi-magnon states. We present a loop-gas description of these localized magnons and a phase diagram of this transition, thus providing information for which magnetic fields and temperatures magnon crystallization can be observed experimentally. The emergence of a finite-temperature continuous transition to a magnon-crystal is expected to be generic for spin models in dimension $D>1$ where flat-band multi-magnon ground states break translational symmetry.
The helimagnet FeP is part of a family of binary pnictide materials with the MnP-type structure which share a nonsymmorphic crystal symmetry that preserves generic band structure characteristics through changes in elemental composition. It shows many similarities, including in its magnetic order, to isostructural CrAs and MnP, two compounds that are driven to superconductivity under applied pressure. Here we present a series of high magnetic field experiments on high quality single crystals of FeP, showing that the resistance not only increases without saturation by up to several hundred times its zero field value by 35 T, but that it also exhibits an anomalously linear field dependence over the entire field range when the field is aligned precisely along the crystallographic c-axis. A close comparison of quantum oscillation frequencies to electronic structure calculations links this orientation to a semi-Dirac point in the band structure which disperses linearly in a single direction in the plane perpendicular to field, a symmetry-protected feature of this entire material family. We show that the two striking features of MR-large amplitude and linear field dependence-arise separately in this system, with the latter likely due to a combination of ordered magnetism and topological band structure.
The square-lattice quantum Heisenberg antiferromagnet displays a pronounced anomaly of unknown origin in its magnetic excitation spectrum. The anomaly manifests itself only for short wavelength excitations propagating along the direction connecting n earest neighbors. Using polarized neutron spectroscopy, we have fully characterized the magnetic fluctuations in the model metal-organic compound CFTD, revealing an isotropic continuum at the anomaly indicative of fractional excitations. A theoretical framework based on the Gutzwiller projection method is developed to explain the origin of the continuum at the anomaly. This indicates that the anomaly arises from deconfined fractional spin-1/2 quasiparticle pairs, the 2D analog of 1D spinons. Away from the anomaly the conventional spin-wave spectrum is recovered as pairs of fractional quasiparticles bind to form spin-1 magnons. Our results therefore establish the existence of fractional quasiparticles in the simplest model two dimensional antiferromagnet even in the absence of frustration.
Oxide double perovskites wherein octahedra formed by both 3d elements and sp-based heavy elements give rise to unconventional magnetic ordering and correlated quantum phenomena crucial for futuristic applications. Here, by carrying out experimental a nd first principles investigations, we present the electronic structure and magnetic phases of Ba2MnTeO6, where Mn^2+ ions with S = 5/2 spins constitute a perfect triangular lattice. The magnetic susceptibility reveals a large Curie- Weiss temperature -152 K suggesting the presence of strong antiferromagnetic interactions between Mn^2+ moments in the spin lattice. A phase transition at 20 K is revealed by magnetic susceptibility and specific heat which is attributed to the presence of a sizeable inter-plane interactions. Below the transition temperature, the specific heat data show antiferromagnetic magnon excitations with a gap of 1.4 K. Furthermore, muon spin-relaxation reveals the presence of static internal fields in the ordered state and provides strong evidence of short-range spin correlations for T > TN. The DFT+U calculations and spin-dimer analysis infer that Heisenberg interactions govern the inter and intra-layer spin-frustrations in this perovskite. The inter and intra-layer exchange interactions are of comparable strengths (J1 = 4.6 K, J2 = 0.92 J1). However, a weak third nearest-neighbor ferromagnetic inter-layer interaction exists (J3=-0.04 J1) due to double-exchange interaction via the linear path Mn-O-Te-O-Mn. The combined effect of J2 and J3 interactions stabilizes a three dimensional long-range magnetic ordering in this frustrated magnet.
We carried out inelastic neutron scattering experiments on a buckled honeycomb lattice antiferromagnet Ba$_{2}$NiTeO$_{6}$ exhibiting a stripe structure at a low temperature. Magnetic excitations are observed in the energy range of $hbar omega lesssi m 10$ meV having an anisotropy gap of 2 meV at 2 K. We perform spin-wave calculations to identify the spin model. The obtained microscopic parameters are consistent with the location of the stripe structure in the classical phase diagram. Furthermore, the Weiss temperature independently estimated from a bulk magnetic susceptibility is consistent with the microscopic parameters. The results reveal that a competition between the NN and NNN interactions that together with a relatively large single ion magnetic anisotropy stabilize the stripe magnetic structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا