ترغب بنشر مسار تعليمي؟ اضغط هنا

Communicative Visualizations as a Learning Problem

87   0   0.0 ( 0 )
 نشر من قبل Eytan Adar
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Significant research has provided robust task and evaluation languages for the analysis of exploratory visualizations. Unfortunately, these taxonomies fail when applied to communicative visualizations. Instead, designers often resort to evaluating communicative visualizations from the cognitive efficiency perspective: can the recipient accurately decode my message/insight? However, designers are unlikely to be satisfied if the message went in one ear and out the other. The consequence of this inconsistency is that it is difficult to design or select between competing options in a principled way. The problem we address is the fundamental mismatch between how designers want to describe their intent, and the language they have. We argue that visualization designers can address this limitation through a learning lens: that the recipient is a student and the designer a teacher. By using learning objectives, designers can better define, assess, and compare communicative visualizations. We illustrate how the learning-based approach provides a framework for understanding a wide array of communicative goals. To understand how the framework can be applied (and its limitations), we surveyed and interviewed members of the Data Visualization Society using their own visualizations as a probe. Through this study we identified the broad range of objectives in communicative visualizations and the prevalence of certain objective types.



قيم البحث

اقرأ أيضاً

Feedback tools help people to monitor information about themselves to improve their health, sustainability practices, or personal well-being. Yet reasoning about personal data (e.g., pedometer counts, blood pressure readings, or home electricity cons umption) to gain a deep understanding of your current practices and how to change can be challenging with the data alone. We integrate quantitative feedback data within a personal digital calendar; this approach aims to make the feedback data readily accessible and more comprehensible. We report on an eight-week field study of an on-calendar visualization tool. Results showed that a personal calendar can provide rich context for people to reason about their feedback data. The on-calendar visualization enabled people to quickly identify and reason about regular patterns and anomalies. Based on our results, we also derived a model of the behavior feedback process that extends existing technology adoption models. With that, we reflected on potential barriers for the ongoing use of feedback tools.
This work presents a new approach based on deep learning to automatically extract colormaps from visualizations. After summarizing colors in an input visualization image as a Lab color histogram, we pass the histogram to a pre-trained deep neural net work, which learns to predict the colormap that produces the visualization. To train the network, we create a new dataset of 64K visualizations that cover a wide variety of data distributions, chart types, and colormaps. The network adopts an atrous spatial pyramid pooling module to capture color features at multiple scales in the input color histograms. We then classify the predicted colormap as discrete or continuous and refine the predicted colormap based on its color histogram. Quantitative comparisons to existing methods show the superior performance of our approach on both synthetic and real-world visualizations. We further demonstrate the utility of our method with two use cases,i.e., color transfer and color remapping.
Leveraging hypergraph structures to model advanced processes has gained much attention over the last few years in many areas, ranging from protein-interaction in computational biology to image retrieval using machine learning. Hypergraph models can p rovide a more accurate representation of the underlying processes while reducing the overall number of links compared to regular representations. However, interactive visualization methods for hypergraphs and hypergraph-based models have rarely been explored or systematically analyzed. This paper reviews the existing research landscape for hypergraph and hypergraph model visualizations and assesses the currently employed techniques. We provide an overview and a categorization of proposed approaches, focusing on performance, scalability, interaction support, successful evaluation, and the ability to represent different underlying data structures, including a recent demand for a temporal representation of interaction networks and their improvements beyond graph-based methods. Lastly, we discuss the strengths and weaknesses of the approaches and give an insight into the future challenges arising in this emerging research field.
84 - Aoyu Wu , Wai Tong , Tim Dwyer 2020
We contribute MobileVisFixer, a new method to make visualizations more mobile-friendly. Although mobile devices have become the primary means of accessing information on the web, many existing visualizations are not optimized for small screens and ca n lead to a frustrating user experience. Currently, practitioners and researchers have to engage in a tedious and time-consuming process to ensure that their designs scale to screens of different sizes, and existing toolkits and libraries provide little support in diagnosing and repairing issues. To address this challenge, MobileVisFixer automates a mobile-friendly visualization re-design process with a novel reinforcement learning framework. To inform the design of MobileVisFixer, we first collected and analyzed SVG-based visualizations on the web, and identified five common mobile-friendly issues. MobileVisFixer addresses four of these issues on single-view Cartesian visualizations with linear or discrete scales by a Markov Decision Process model that is both generalizable across various visualizations and fully explainable. MobileVisFixer deconstructs charts into declarative formats, and uses a greedy heuristic based on Policy Gradient methods to find solutions to this difficult, multi-criteria optimization problem in reasonable time. In addition, MobileVisFixer can be easily extended with the incorporation of optimization algorithms for data visualizations. Quantitative evaluation on two real-world datasets demonstrates the effectiveness and generalizability of our method.
Scatterplots are one of the simplest and most commonly-used visualizations for understanding quantitative, multidimensional data. However, since scatterplots only depict two attributes at a time, analysts often need to manually generate and inspect l arge numbers of scatterplots to make sense of large datasets with many attributes. We present a visual query system for scatterplots, SCATTERSEARCH, that enables users to visually search and browse through large collections of scatterplots. Users can query for other visualizations based on a region of interest or find other scatterplots that look similar to a selected one. We present two demo scenarios, provide a system overview of SCATTERSEARCH, and outline future directions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا