ﻻ يوجد ملخص باللغة العربية
We study the ultimate bounds on the sensitivity of a Bloch-oscillation atom interferometer where the external force is estimated from the measurement of the on-site atomic density. For external forces such that the energy difference between lattice sites is smaller than the tunneling energy, the atomic wave-function spreads over many lattice sites, increasing the separation between the occupied modes of the lattice and naturally enhancing the sensitivity of the interferometer. To investigate the applicability of this scheme we estimate the effect of uncontrolled fluctuations of the tunneling energy and the finite resolution of the atom detection. Our analysis shows that a horizontal lattice combined with a weak external force allow for high sensitivities. Therefore, this setup is a promising solution for compact devices or for measurements with high spatial resolution.
Adiabatic quantum pumping in one-dimensional lattices is extended by adding a tilted potential to probe better topologically nontrivial bands. This extension leads to almost perfectly quantized pumping for an arbitrary initial state selected in a ban
The Bloch oscillation (BO) and Wannier-Stark localization (WSL) are fundamental concepts about metal-insulator transitions in condensed matter physics. These phenomena have also been observed in semiconductor superlattices and simulated in platforms
Cold atoms in an optical lattice execute Bloch-Zener oscillations when they are accelerated. We have performed a theoretical investigation into the case when the optical lattice is the intra-cavity field of a driven Fabry-Perot resonator. When the at
We demonstrate phase sensitivity in a horizontally guided, acceleration-sensitive atom interferometer with a momentum separation of 80hk between its arms. A fringe visibility of 7% is observed. Our coherent pulse sequence accelerates the cold cloud i
We present the first realisation of a solitonic atom interferometer. A Bose-Einstein condensate of $1times10^4$ atoms of rubidium-85 is loaded into a horizontal optical waveguide. Through the use of a Feshbach resonance, the $s$-wave scattering lengt