ﻻ يوجد ملخص باللغة العربية
An explicit numerical strategy that practically preserves invariants is derived for conservative systems by combining an explicit high-order Runge-Kutta (RK) scheme with a simple modification of the standard projection approach, which is named the explicit invariants-preserving (EIP) method. The proposed approach is shown to have the same order as the underlying RK method, while the error of invariants is analyzed in the order of $mathcal{O}left(h^{2(p+1)}right),$ where $h$ is the time step and $p$ represents the order of the method. When $p$ is appropriately large, the EIP method is practically invariants-conserving because the error of invariants can reach the machine accuracy. The method is illustrated for the cases of single and multiple invariants, with regard to both ODEs and high-dimensional PDEs. Extensive numerical experiments are presented to verify our theoretical results and demonstrate the superior behaviors of the proposed method in a long time numerical simulation. Numerical results suggest that the fourth-order EIP method preserves much better the qualitative properties of the flow than the standard fourth-order RK method and it is more efficient in practice than the fully implicit integrators.
In this paper, we consider an online enrichment procedure using the Generalized Multiscale Finite Element Method (GMsFEM) in the context of a two-phase flow model in heterogeneous porous media. The coefficient of the elliptic equation is referred to
Error estimates are rigorously derived for a semi-discrete version of a conservative spectral method for approximating the space-homogeneous Fokker-Planck-Landau (FPL) equation associated to hard potentials. The analysis included shows that the semi-
We introduce conservative integrators for long term integration of piecewise smooth systems with transversal dynamics and piecewise smooth conserved quantities. In essence, for a piecewise dynamical system with piecewise defined conserved quantities
We consider general systems of ordinary differential equations with monotonic Gibbs entropy, and introduce an entropic scheme that simply imposes an entropy fix after every time step of any existing time integrator. It is proved that in the general c
In this paper, we develop a new free-stream preserving (FP) method for high-order upwind conservative finite-difference (FD) schemes on the curvilinear grids. This FP method is constrcuted by subtracting a reference cell-face flow state from each cel