ﻻ يوجد ملخص باللغة العربية
A two-level atom freely falling towards a Schwarzschild black hole was recently shown to detect radiation in the Boulware vacuum in an insightful paper [M. O. Scully et al., Proc. Natl. Acad. Sci. U.S.A. 115, 8131 (2018)]. The two-state atom acts as a dipole detector and its interaction with the field can be modeled using a quantum optics approach. The relative acceleration between the scalar field and the detector causes the atom to detect the radiation. In this paper, we show that this acceleration radiation is driven by the near-horizon physics of the black hole. This insight reinforces the relevance of near-horizon conformal quantum mechanics for all the physics associated with the thermodynamic properties of the black hole. We additionally highlight the conformal aspects of the radiation that is given by a Planck distribution with the Hawking temperature.
An atom falling freely into a Kerr black hole in a Boulware-like vacuum is shown to emit radiation with a Planck spectrum at the Hawking temperature. For a cloud of falling atoms with random initial times, the radiation is thermal. The existence of t
Inspired by some recent works of Tippett-Tsang and Mallary-Khanna-Price, we present a new spacetime model containing closed timelike curves (CTCs). This model is obtained postulating an ad hoc Lorentzian metric on $mathbb{R}^4$, which differs from th
We consider dynamics of a quantum scalar field, minimally coupled to classical gravity, in the near-horizon region of a Schwarzschild black-hole. It is described by a static Klein-Gordon operator which in the near-horizon region reduces to a scale in
We feed a black hole on a self-gravitating radiation and observe what happens during the process. Considering a spherical shell of radiation, we show that the contribution of self-gravity makes the thermodynamic interaction through the bottom of the
The extendibility of spacetime and the existence of weak solutions to the Einstein field equations beyond Cauchy horizons, is a crucial ingredient to examine the limits of General Relativity. Strong Cosmic Censorship serves as a firewall for gravitat