ترغب بنشر مسار تعليمي؟ اضغط هنا

Braiding and all quantum operations with Majorana modes in 1D

62   0   0.0 ( 0 )
 نشر من قبل Viktoriia Kornich
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a scheme to perform braiding and all other unitary operations with Majorana modes in 1D that, in contrast to previous proposals, is solely based on resonant manipulation involving the first excited state extended over the modes. The detection of the population of the excited state also enables initialization and read-out. We provide an elaborated illustration of the scheme with a concrete device.



قيم البحث

اقرأ أيضاً

In condensed matter systems, zero-dimensional or one-dimensional Majorana modes can be realized respectively as the end and edge states of one-dimensional and two-dimensional topological superconductors. In this $textit{top-down}$ approach, $(d-1)$-d imensional Majorana modes are obtained as the boundary states of a topologically nontrivial $d$-dimensional bulk. In a $textit{bottom-up}$ approach instead, $d$-dimensional Majorana modes in a $d$-dimensional system can be realized as the continuous limit of a periodic lattice of coupled $(d-1)$-dimensional Majorana modes. We illustrate this idea by considering one-dimensional proximitized superconductors with spatially-modulated potential or magnetic fields. The ensuing inhomogenous topological state exhibits one-dimensional counterpropagating Majorana modes with finite dispersion, and with a Majorana gap which can be controlled by external fields. In the massless case, the Majorana modes have opposite Majorana polarizations and pseudospins, are conformally invariant, and realize centrally extended quantum mechanical supersymmetry. The supersymmetry exhibits spontaneous partial breaking. Consequently, the massless Majorana fermion can be identified as a Goldstino, i.e., the Nambu-Goldstone fermion associated with the spontaneously broken supersymmetry.
One-dimensional Majorana modes can be obtained as boundary excitations of topologically nontrivial two-dimensional topological superconductors. Here, we propose instead the bottom-up creation of one-dimensional, counterpropagating, and dispersive Maj orana modes as bulk excitations of a periodic chain of partially-overlapping, zero-dimensional Majorana modes in proximitized quantum nanowires via periodically-modulated magnetic fields. These dispersive one-dimensional Majorana modes can be either massive or massless. Massless Majorana modes are pseudohelical, having opposite Majorana pseudospin, and realize emergent quantum mechanical supersymmetry. The system exhibits extended supersymmetry with central extensions and with spontaneous partial breaking. We identify the massless Majorana fermions as Goldstinos, i.e., the Nambu-Goldstone fermions associated with the spontaneous breaking of supersymmetry. The experimental fingerprint of massless Majorana modes and supersymmetry is the presence of a finite zero-bias peak, which is generally not expected for Majorana modes with a finite overlap and localized at a finite distance. Moreover, slowly varying magnetic fields can realize an adiabatic Majorana pump which can be used as a dynamically probe of topological superconductivity.
469 - Yan-Feng Zhou , Zhe Hou , 2018
The non-Abelian braiding of Majorana fermions is one of the most promising operations providing a key building block for the realization of topological quantum computation. Recently, the chiral Majorana fermions were observed in a hybrid junction btw een a quantum anomalous Hall insulator and an s-wave superconductor. Here we show that if a quantum dot or Majorana zero mode couples to the chiral Majorana fermions, the resulting resonant exchange of chiral Majorana fermions can lead to the non-Abelian braiding. Remarkably, any operation in the braid group can be achieved by this scheme. We further propose electrical transport experiments to observe the braiding of four chiral Majorana fermions and demonstrate the non-Abelian braiding statistics in four-terminal devices of the hybrid junctions. Both a conductance peak due to the braiding and the braiding-order dependent conductance are predicted. These findings pave a way to perform any braiding operation of chiral Majorana fermions by electrically controllable quantum dots.
We study Majorana zero modes properties in cylindrical cross-section semiconductor quantum wires based on the $k cdot p$ theory and a discretized lattice model. Within this model, the influence of disorder potentials in the wire and amplitude and pha se fluctuations of the superconducting order-parameter are discussed. We find that for typical wire geometries, pairing potentials, and spin-orbit coupling strengths, coupling between quasi-one-dimensional sub-bands is weak, low-energy quasiparticles near the Fermi energy are nearly completely spin-polarized, and the number of electrons in the active sub-bands of topological states is small.
We show how a quantum dot with a ballistic single-channel point contact to a superconductor can be created by means of a gate electrode at the edge of a quantum spin Hall insulator (such as an InAs/GaSb quantum well). A weak perpendicular magnetic fi eld traps a Majorana zero-mode, so that it can be observed in the gate-voltage-averaged differential conductance <dI/dV> as a 4e^2/h zero-bias peak above a (2/3{pi}^2 - 4)e^2/h background. The one-dimensional edge does not permit the braiding of pairs of Majorana fermions, but this obstacle can be overcome by coupling opposite edges at a constriction, allowing for a demonstration of non-Abelian statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا