ﻻ يوجد ملخص باللغة العربية
We study the oblique derivative problem for uniformly elliptic equations on cone domains. Under the assumption of axi-symmetry of the solution, we find sufficient conditions on the angle of the oblique vector for Holder regularity of the gradient to hold up to the vertex of the cone. The proof of regularity is based on the application of carefully constructed barrier methods or via perturbative arguments. In the case that such regularity does not hold, we give explicit counterexamples. We also give a counterexample to regularity in the absence of axi-symmetry. Unlike in the equivalent two dimensional problem, the gradient Holder regularity does not hold for all axi-symmetric solutions, but rather the qualitative regularity properties depend on both the opening angle of the cone and the angle of the oblique vector in the boundary condition.
We consider second-order elliptic equations with oblique derivative boundary conditions, defined on a family of bounded domains in $mathbb{C}$ that depend smoothly on a real parameter $lambda in [0,1]$. We derive the precise regularity of the solutio
We show that weak solutions to conormal derivative problem for elliptic equations in divergence form are continuously differentiable up to the boundary provided that the mean oscillations of the leading coefficients satisfy the Dini condition, the lo
We consider the Dirichlet and Neumann problems for second-order linear elliptic equations: $$-triangle u +operatorname{div}(umathbf{b}) =f quadtext{ and }quad -triangle v -mathbf{b} cdot abla v =g$$ in a bounded Lipschitz domain $Omega$ in $mathbb{R
In the present paper, we investigate the regularity and symmetry properties of weak solutions to semilinear elliptic equations which are locally stable.
We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain nonlinear equations in cases