ترغب بنشر مسار تعليمي؟ اضغط هنا

Incidence of Quantum Confinement on Dark Triplet Excitons in Carbon Nanotubes

126   0   0.0 ( 0 )
 نشر من قبل Ferenc Simon
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photophysics of single-wall carbon nanotubes (SWCNTs) is intensively studied due to their potential application in light harvesting and optoelectronics. Excited states of SWCNTs form strongly bound electron-hole pairs, excitons, of which only singlet excitons participate in application relevant optical transitions. Long-living spin-triplet states hinder applications but they emerge as candidates for quantum information storage. Therefore knowledge of the triplet exciton energy structure, in particular in a SWCNT chirality dependent manner, is greatly desired. We report the observation of light emission from triplet state recombination, i.e. phosphorescence, for several SWCNT chiralities using a purpose-built spectrometer. This yields the singlet-triplet gap as a function of SWCNT diameter and it follows predictions based on quantum confinement effects. Saturation under high microwave power (up to 10 W) irradiation allows to determine the spin-relaxation time for triplet states. Our study sensitively discriminates whether the lowest optically active state is populated from an excited state on the same nanotube or through Forster exciton energy transfer from a neighboring nanotube.



قيم البحث

اقرأ أيضاً

The efficiencies of photonic devices are primarily governed by radiative quantum efficiency, which is a property given by the light emitting material. Quantitative characterization for carbon nanotubes, however, has been difficult despite being a pro minent material for nanoscale photonics. Here we determine the radiative quantum efficiency of bright excitons in carbon nanotubes by modifying the exciton dynamics through cavity quantum electrodynamical effects. Silicon photonic crystal nanobeam cavities are used to induce the Purcell effect on individual carbon nanotubes. Spectral and temporal behavior of the cavity enhancement is characterized by photoluminescence microscopy, and the fraction of the radiative decay process is evaluated. We find that the radiative quantum efficiency is near unity for bright excitons in carbon nanotubes at room temperature.
We report the direct observation of the spin-singlet dark excitonic state in individual single-walled carbon nanotubes through low-temperature micro-photoluminescence spectroscopy in magnetic fields. A magnetic field up to 5 T, applied along the nano tube axis, brightened the dark state, leading to the emergence of a new emission peak. The peak rapidly grew in intensity with increasing field at the expense of the originally-dominant bright exciton peak and finally became dominant at fields $>$3 T. This behavior, universally observed for more than 50 nanotubes of different chiralities, can be quantitatively explained through a model incorporating the Aharonov-Bohm effect and intervalley Coulomb mixing, unambiguously proving the existence of dark excitons. The directly measured dark-bright splitting values were 1-4 meV for tube diameters 1.0-1.3 nm. Scatter in the splitting value emphasizes the role of the local environment surrounding a nanotube in determining the excitonic fine structure of single-walled carbon nanotubes.
Ultrafast terahertz spectroscopy accesses the {em dark} excitonic ground state in resonantly-excited (6,5) SWNTs via internal, direct dipole-allowed transitions between lowest lying dark-bright pair state $sim$6 meV. An analytical model reproduces th e response which enables quantitative analysis of transient densities of dark excitons and {em e-h} plasma, oscillator strength, transition energy renormalization and dynamics. %excitation-induced renormalization. Non-equilibrium, yet stable, quasi-1D quantum states with dark excitonic correlations rapidly emerge even with increasing off-resonance photoexcitation and experience a unique crossover to complex phase-space filling of %a complex distribution between both dark and bright pair states, different from dense 2D/3D excitons influenced by the thermalization, cooling and ionization to free carriers.
Near-infrared magneto-optical spectroscopy of single-walled carbon nanotubes reveals two absorption peaks with an equal strength at high magnetic fields ($>$ 55 T). We show that the peak separation is determined by the Aharonov-Bohm phase due to the tube-threading magnetic flux, which breaks the time-reversal symmetry and lifts the valley degeneracy. This field-induced symmetry breaking thus overcomes the Coulomb-induced intervalley mixing which is predicted to make the lowest exciton state optically inactive (or ``dark).
We examine the excitonic nature of high-lying optical transitions in single-walled carbon nanotubes by means of Rayleigh scattering spectroscopy. A careful analysis of the principal transitions of individual semiconducting and metallic nanotubes reve als that in both cases the lineshape is consistent with an excitonic model, but not one of free-carriers. For semiconducting species, side-bands are observed at ~200 meV above the third and fourth optical transitions. These features are ascribed to exciton-phonon bound states. Such side-bands are not apparent for metallic nanotubes,as expected from the reduced strength of excitonic interactions in these systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا