ﻻ يوجد ملخص باللغة العربية
The variability in multi-pulse gamma-ray bursts (GRBs) may help to reveal the mechanism of underlying processes from the central engine. To investigate whether the self-organized criticality (SOC) phenomena exist in the prompt phase of GRBs, we statistically study the properties of GRBs with more than 3 pulses in each burst by fitting the distributions of several observed physical variables with a Markov Chain Monte Carlo approach, including the isotropic energy $E_{rm iso}$, the duration time $T$ and the peak count rate $P$ of each pulse. Our sample consists of 454 pulses in 93 GRBs observed by the CGRO/BATSE satellite. The best-fitting values and uncertainties for these power-law indices of the differential frequency distributions are: $alpha^d_{E}=1.54 pm 0.09$, $alpha^d_{T}=1.82_{-0.15}^{+0.14}$ and $alpha^d_{P}=2.09_{-0.19}^{+0.18}$, while the power-law indices in the cumulative frequency distributions are: $alpha^c_{E}=1.44_{-0.10}^{+0.08}$, $alpha^c_{T}=1.75_{-0.13}^{+0.11}$ and $alpha^c_{P}=1.99_{-0.19}^{+0.16}$. We find that these distributions are roughly consistent with the physical framework of a Fractal-Diffusive, Self-Organized Criticality (FD-SOC) system with the spatial dimension $S=3$ and the classical diffusion $beta$=1. Our results support that the jet responsible for the GRBs should be magnetically dominated and magnetic instabilities (e.g., kink model, or tearing-model instability) lead the GRB emission region into the SOC state.
A new cellular automaton (CA) model is presented for the self-organized criticality (SOC) in recurrent bursts of soft gamma repeaters (SGRs), which are interpreted as avalanches of reconnection in the magnetosphere of neutron stars. The nodes of a re
The complete Swift Burst Alert Telescope and X-Ray Telescope light curves of 118 gamma-ray bursts (GRBs) with known redshifts were fitted using the physical model of GRB pulses by Willingale et al. to produce a total of 607 pulses. We compute the pul
Power law size distributions are the hallmarks of nonlinear energy dissipation processes governed by self-organized criticality. Here we analyze 75 data sets of stellar flare size distributions, mostly obtained from the {sl Extreme Ultra-Violet Explo
Self-organized criticality (SOC) refers to the ability of complex systems to evolve towards a 2nd-order phase transition at which interactions between system components lead to scale-invariant events beneficial for system performance. For the last tw
The shape of clouds has proven to be essential for classifying them. Our analysis of images from fair weather cumulus clouds reveals that, besides by turbulence they are driven by self-organized criticality (SOC). Our observations yield exponents tha