ترغب بنشر مسار تعليمي؟ اضغط هنا

One-bit Supervision for Image Classification

49   0   0.0 ( 0 )
 نشر من قبل Hengtong Hu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents one-bit supervision, a novel setting of learning from incomplete annotations, in the scenario of image classification. Instead of training a model upon the accurate label of each sample, our setting requires the model to query with a predicted label of each sample and learn from the answer whether the guess is correct. This provides one bit (yes or no) of information, and more importantly, annotating each sample becomes much easier than finding the accurate label from many candidate classes. There are two keys to training a model upon one-bit supervision: improving the guess accuracy and making use of incorrect guesses. For these purposes, we propose a multi-stage training paradigm which incorporates negative label suppression into an off-the-shelf semi-supervised learning algorithm. In three popular image classification benchmarks, our approach claims higher efficiency in utilizing the limited amount of annotations.



قيم البحث

اقرأ أيضاً

Weak supervision learning on classification labels has demonstrated high performance in various tasks. When a few pixel-level fine annotations are also affordable, it is natural to leverage both of the pixel-level (e.g., segmentation) and image level (e.g., classification) annotation to further improve the performance. In computational pathology, however, such weak or mixed supervision learning is still a challenging task, since the high resolution of whole slide images makes it unattainable to perform end-to-end training of classification models. An alternative approach is to analyze such data by patch-base model training, i.e., using self-supervised learning to generate pixel-level pseudo labels for patches. However, such methods usually have model drifting issues, i.e., hard to converge, because the noise accumulates during the self-training process. To handle those problems, we propose a mixed supervision learning framework for super high-resolution images to effectively utilize their various labels (e.g., sufficient image-level coarse annotations and a few pixel-level fine labels). During the patch training stage, this framework can make use of coarse image-level labels to refine self-supervised learning and generate high-quality pixel-level pseudo labels. A comprehensive strategy is proposed to suppress pixel-level false positives and false negatives. Three real-world datasets with very large number of images (i.e., more than 10,000 whole slide images) and various types of labels are used to evaluate the effectiveness of mixed supervision learning. We reduced the false positive rate by around one third compared to state of the art while retaining 100% sensitivity, in the task of image-level classification.
Self-training is a simple semi-supervised learning approach: Unlabelled examples that attract high-confidence predictions are labelled with their predictions and added to the training set, with this process being repeated multiple times. Recently, se lf-supervision -- learning without manual supervision by solving an automatically-generated pretext task -- has gained prominence in deep learning. This paper investigates three different ways of incorporating self-supervision into self-training to improve accuracy in image classification: self-supervision as pretraining only, self-supervision performed exclusively in the first iteration of self-training, and self-supervision added to every iteration of self-training. Empirical results on the SVHN, CIFAR-10, and PlantVillage datasets, using both training from scratch, and Imagenet-pretrained weights, show that applying self-supervision only in the first iteration of self-training can greatly improve accuracy, for a modest increase in computation time.
68 - Vasileios Nakos 2017
Is it possible to obliviously construct a set of hyperplanes H such that you can approximate a unit vector x when you are given the side on which the vector lies with respect to every h in H? In the sparse recovery literature, where x is approximatel y k-sparse, this problem is called one-bit compressed sensing and has received a fair amount of attention the last decade. In this paper we obtain the first scheme that achieves almost optimal measurements and sublinear decoding time for one-bit compressed sensing in the non-uniform case. For a large range of parameters, we improve the state of the art in both the number of measurements and the decoding time.
85 - Wanqi Xue , Wei Wang 2020
One-shot image classification aims to train image classifiers over the dataset with only one image per category. It is challenging for modern deep neural networks that typically require hundreds or thousands of images per class. In this paper, we ado pt metric learning for this problem, which has been applied for few- and many-shot image classification by comparing the distance between the test image and the center of each class in the feature space. However, for one-shot learning, the existing metric learning approaches would suffer poor performance because the single training image may not be representative of the class. For example, if the image is far away from the class center in the feature space, the metric-learning based algorithms are unlikely to make correct predictions for the test images because the decision boundary is shifted by this noisy image. To address this issue, we propose a simple yet effective regression model, denoted by RestoreNet, which learns a class agnostic transformation on the image feature to move the image closer to the class center in the feature space. Experiments demonstrate that RestoreNet obtains superior performance over the state-of-the-art methods on a broad range of datasets. Moreover, RestoreNet can be easily combined with other methods to achieve further improvement.
Attributes act as intermediate representations that enable parameter sharing between classes, a must when training data is scarce. We propose to view attribute-based image classification as a label-embedding problem: each class is embedded in the spa ce of attribute vectors. We introduce a function that measures the compatibility between an image and a label embedding. The parameters of this function are learned on a training set of labeled samples to ensure that, given an image, the correct classes rank higher than the incorrect ones. Results on the Animals With Attributes and Caltech-UCSD-Birds datasets show that the proposed framework outperforms the standard Direct Attribute Prediction baseline in a zero-shot learning scenario. Label embedding enjoys a built-in ability to leverage alternative sources of information instead of or in addition to attributes, such as e.g. class hierarchies or textual descriptions. Moreover, label embedding encompasses the whole range of learning settings from zero-shot learning to regular learning with a large number of labeled examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا