The Deep Noise Suppression (DNS) challenge is designed to foster innovation in the area of noise suppression to achieve superior perceptual speech quality. We recently organized a DNS challenge special session at INTERSPEECH 2020. We open sourced training and test datasets for researchers to train their noise suppression models. We also open sourced a subjective evaluation framework and used the tool to evaluate and pick the final winners. Many researchers from academia and industry made significant contributions to push the field forward. We also learned that as a research community, we still have a long way to go in achieving excellent speech quality in challenging noisy real-time conditions. In this challenge, we are expanding both our training and test datasets. There are two tracks with one focusing on real-time denoising and the other focusing on real-time personalized deep noise suppression. We also make a non-intrusive objective speech quality metric called DNSMOS available for participants to use during their development stages. The final evaluation will be based on subjective tests.