ﻻ يوجد ملخص باللغة العربية
Real-time ridesharing systems such as UberPool, Lyft Line, GrabShare have become hugely popular as they reduce the costs for customers, improve per trip revenue for drivers and reduce traffic on the roads by grouping customers with similar itineraries. The key challenge in these systems is to group the right requests to travel together in the right available vehicles in real-time, so that the objective (e.g., requests served, revenue or delay) is optimized. This challenge has been addressed in existing work by: (i) generating as many relevant feasible (with respect to the available delay for customers) combinations of requests as possible in real-time; and then (ii) optimizing assignment of the feasible request combinations to vehicles. Since the number of request combinations increases exponentially with the increase in vehicle capacity and number of requests, unfortunately, such approaches have to employ ad hoc heuristics to identify a subset of request combinations for assignment. Our key contribution is in developing approaches that employ zone (abstraction of individual locations) paths instead of request combinations. Zone paths allow for generation of significantly more relevant combinations (in comparison to ad hoc heuristics) in real-time than competing approaches due to two reasons: (i) Each zone path can typically represent multiple request combinations; (ii) Zone paths are generated using a combination of offline and online methods. Specifically, we contribute both myopic (ridesharing assignment focussed on current requests only) and non-myopic (ridesharing assignment considers impact on expected future requests) approaches that employ zone paths. In our experimental results, we demonstrate that our myopic approach outperforms (with respect to both objective and runtime) the current best myopic approach for ridesharing on both real-world and synthetic datasets.
In multi-capacity ridesharing, multiple requests (e.g., customers, food items, parcels) with different origin and destination pairs travel in one resource. In recent years, online multi-capacity ridesharing services (i.e., where assignments are made
In order to utilize solar imagery for real-time feature identification and large-scale data science investigations of solar structures, we need maps of the Sun where phenomena, or themes, are labeled. Since solar imagers produce observations every fe
Large-scale ride-sharing systems combine real-time dispatching and routing optimization over a rolling time horizon with a model predictive control (MPC) component that relocates idle vehicles to anticipate the demand. The MPC optimization operates o
Detection of anomalous behaviors in data centers is crucial to predictive maintenance and data safety. With data centers, we mean any computer network that allows users to transmit and exchange data and information. In particular, we focus on the Tie
This paper shows how knowledge representation and reasoning techniques can be used to support organizations in complying with the GDPR, that is, the new European data protection regulation. This work is carried out in a European H2020 project called