Atomic nuclei can be spontaneously deformed into non-spherical shapes as many-nucleon systems. We discuss to what extent a similar deformation takes place in many-electron systems. To this end, we employ several many-body methods, such as the unrestricted Hartree-Fock method, post-Hartree-Fock methods, and the density functional theory, to compute the electron distribution in atoms. We show that the electron distribution of open-shell atoms is deformed due solely to the single-particle valence orbitals, while the core part remains spherical. This is in contrast to atomic nuclei, which can be deformed collectively. We qualitatively discuss the origin for this apparent difference between atoms and nuclei by estimating the energy change due to deformation. We find that nature of the interaction plays an essential role for the collective deformation.