ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting Factorizing Aggregated Posterior in Learning Disentangled Representations

63   0   0.0 ( 0 )
 نشر من قبل Ze Cheng
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In the problem of learning disentangled representations, one of the promising methods is to factorize aggregated posterior by penalizing the total correlation of sampled latent variables. However, this well-motivated strategy has a blind spot: there is a disparity between the sampled latent representation and its corresponding mean representation. In this paper, we provide a theoretical explanation that low total correlation of sampled representation cannot guarantee low total correlation of the mean representation. Indeed, we prove that for the multivariate normal distributions, the mean representation with arbitrarily high total correlation can have a corresponding sampled representation with bounded total correlation. We also propose a method to eliminate this disparity. Experiments show that our model can learn a mean representation with much lower total correlation, hence a factorized mean representation. Moreover, we offer a detailed explanation of the limitations of factorizing aggregated posterior: factor disintegration. Our work indicates a potential direction for future research of disentangled learning.



قيم البحث

اقرأ أيضاً

Deep latent-variable models learn representations of high-dimensional data in an unsupervised manner. A number of recent efforts have focused on learning representations that disentangle statistically independent axes of variation by introducing modi fications to the standard objective function. These approaches generally assume a simple diagonal Gaussian prior and as a result are not able to reliably disentangle discrete factors of variation. We propose a two-level hierarchical objective to control relative degree of statistical independence between blocks of variables and individual variables within blocks. We derive this objective as a generalization of the evidence lower bound, which allows us to explicitly represent the trade-offs between mutual information between data and representation, KL divergence between representation and prior, and coverage of the support of the empirical data distribution. Experiments on a variety of datasets demonstrate that our objective can not only disentangle discrete variables, but that doing so also improves disentanglement of other variables and, importantly, generalization even to unseen combinations of factors.
Time-series representation learning is a fundamental task for time-series analysis. While significant progress has been made to achieve accurate representations for downstream applications, the learned representations often lack interpretability and do not expose semantic meanings. Different from previous efforts on the entangled feature space, we aim to extract the semantic-rich temporal correlations in the latent interpretable factorized representation of the data. Motivated by the success of disentangled representation learning in computer vision, we study the possibility of learning semantic-rich time-series representations, which remains unexplored due to three main challenges: 1) sequential data structure introduces complex temporal correlations and makes the latent representations hard to interpret, 2) sequential models suffer from KL vanishing problem, and 3) interpretable semantic concepts for time-series often rely on multiple factors instead of individuals. To bridge the gap, we propose Disentangle Time Series (DTS), a novel disentanglement enhancement framework for sequential data. Specifically, to generate hierarchical semantic concepts as the interpretable and disentangled representation of time-series, DTS introduces multi-level disentanglement strategies by covering both individual latent factors and group semantic segments. We further theoretically show how to alleviate the KL vanishing problem: DTS introduces a mutual information maximization term, while preserving a heavier penalty on the total correlation and the dimension-wise KL to keep the disentanglement property. Experimental results on various real-world benchmark datasets demonstrate that the representations learned by DTS achieve superior performance in downstream applications, with high interpretability of semantic concepts.
310 - Xiang Chen , Xin Xie , Zhen Bi 2021
Although the self-supervised pre-training of transformer models has resulted in the revolutionizing of natural language processing (NLP) applications and the achievement of state-of-the-art results with regard to various benchmarks, this process is s till vulnerable to small and imperceptible permutations originating from legitimate inputs. Intuitively, the representations should be similar in the feature space with subtle input permutations, while large variations occur with different meanings. This motivates us to investigate the learning of robust textual representation in a contrastive manner. However, it is non-trivial to obtain opposing semantic instances for textual samples. In this study, we propose a disentangled contrastive learning method that separately optimizes the uniformity and alignment of representations without negative sampling. Specifically, we introduce the concept of momentum representation consistency to align features and leverage power normalization while conforming the uniformity. Our experimental results for the NLP benchmarks demonstrate that our approach can obtain better results compared with the baselines, as well as achieve promising improvements with invariance tests and adversarial attacks. The code is available in https://github.com/zxlzr/DCL.
We present a new model DrNET that learns disentangled image representations from video. Our approach leverages the temporal coherence of video and a novel adversarial loss to learn a representation that factorizes each frame into a stationary part an d a temporally varying component. The disentangled representation can be used for a range of tasks. For example, applying a standard LSTM to the time-vary components enables prediction of future frames. We evaluate our approach on a range of synthetic and real videos, demonstrating the ability to coherently generate hundreds of steps into the future.
We present a deep generative model that learns disentangled static and dynamic representations of data from unordered input. Our approach exploits regularities in sequential data that exist regardless of the order in which the data is viewed. The res ult of our factorized graphical model is a well-organized and coherent latent space for data dynamics. We demonstrate our method on several synthetic dynamic datasets and real video data featuring various facial expressions and head poses.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا