ترغب بنشر مسار تعليمي؟ اضغط هنا

Doubly robust estimation for conditional treatment effect: a study on asymptotics

130   0   0.0 ( 0 )
 نشر من قبل Lixing Zhu
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we apply doubly robust approach to estimate, when some covariates are given, the conditional average treatment effect under parametric, semiparametric and nonparametric structure of the nuisance propensity score and outcome regression models. We then conduct a systematic study on the asymptotic distributions of nine estimators with different combinations of estimated propensity score and outcome regressions. The study covers the asymptotic properties with all models correctly specified; with either propensity score or outcome regressions locally / globally misspecified; and with all models locally / globally misspecified. The asymptotic variances are compared and the asymptotic bias correction under model-misspecification is discussed. The phenomenon that the asymptotic variance, with model-misspecification, could sometimes be even smaller than that with all models correctly specified is explored. We also conduct a numerical study to examine the theoretical results.



قيم البحث

اقرأ أيضاً

261 - Keli Guo 2020
The research described herewith is to re-visit the classical doubly robust estimation of average treatment effect by conducting a systematic study on the comparisons, in the sense of asymptotic efficiency, among all possible combinations of the estim ated propensity score and outcome regression. To this end, we consider all nine combinations under, respectively, parametric, nonparametric and semiparametric structures. The comparisons provide useful information on when and how to efficiently utilize the model structures in practice. Further, when there is model-misspecification, either propensity score or outcome regression, we also give the corresponding comparisons. Three phenomena are observed. Firstly, when all models are correctly specified, any combination can achieve the same semiparametric efficiency bound, which coincides with the existing results of some combinations. Secondly, when the propensity score is correctly modeled and estimated, but the outcome regression is misspecified parametrically or semiparametrically, the asymptotic variance is always larger than or equal to the semiparametric efficiency bound. Thirdly, in contrast, when the propensity score is misspecified parametrically or semiparametrically, while the outcome regression is correctly modeled and estimated, the asymptotic variance is not necessarily larger than the semiparametric efficiency bound. In some cases, the super-efficiency phenomenon occurs. We also conduct a small numerical study.
Missing attributes are ubiquitous in causal inference, as they are in most applied statistical work. In this paper, we consider various sets of assumptions under which causal inference is possible despite missing attributes and discuss corresponding approaches to average treatment effect estimation, including generalized propensity score methods and multiple imputation. Across an extensive simulation study, we show that no single method systematically out-performs others. We find, however, that doubly robust modifications of standard methods for average treatment effect estimation with missing data repeatedly perform better than their non-doubly robust baselines; for example, doubly robust generalized propensity score methods beat inverse-weighting with the generalized propensity score. This finding is reinforced in an analysis of an observations study on the effect on mortality of tranexamic acid administration among patients with traumatic brain injury in the context of critical care management. Here, doubly robust estimators recover confidence intervals that are consistent with evidence from randomized trials, whereas non-doubly robust estimators do not.
This paper constructs a doubly robust estimator for continuous dose-response estimation. An outcome regression model is augmented with a set of inverse generalized propensity score covariates to correct for potential misspecification bias. From the a ugmented model we can obtain consistent estimates of mean average potential outcomes for distinct strata of the treatment. A polynomial regression is then fitted to these point estimates to derive a Taylor approximation to the continuous dose-response function. The bootstrap is used for variance estimation. Analytical results and simulations show that our approach can provide a good approximation to linear or nonlinear dose-response functions under various sources of misspecification of the outcome regression or propensity score models. Efficiency in finite samples is good relative to minimum variance consistent estimators.
We propose and analyze an algorithm for the sequential estimation of a conditional quantile in the context of real stochastic codes with vectorvalued inputs. Our algorithm is based on k-nearest neighbors smoothing within a Robbins-Monro estimator. We discuss the convergence of the algorithm under some conditions on the stochastic code. We provide non-asymptotic rates of convergence of the mean squared error and we discuss the tuning of the algorithms parameters.
171 - Karine Bertin 2013
In this paper we consider the problem of estimating $f$, the conditional density of $Y$ given $X$, by using an independent sample distributed as $(X,Y)$ in the multivariate setting. We consider the estimation of $f(x,.)$ where $x$ is a fixed point. W e define two different procedures of estimation, the first one using kernel rules, the second one inspired from projection methods. Both adapted estimators are tuned by using the Goldenshluger and Lepski methodology. After deriving lower bounds, we show that these procedures satisfy oracle inequalities and are optimal from the minimax point of view on anisotropic H{o}lder balls. Furthermore, our results allow us to measure precisely the influence of $mathrm{f}_X(x)$ on rates of convergence, where $mathrm{f}_X$ is the density of $X$. Finally, some simulations illustrate the good behavior of our tuned estimates in practice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا