ﻻ يوجد ملخص باللغة العربية
We present a five-dimensional anisotropic holographic model for light quarks supported by Einstein-dilaton-two-Maxwell action. This model generalizing isotropic holographic model with light quarks is characterized by a Van der Waals-like phase transition between small and large black holes. We compare the location of the phase transition for Wilson loops with the positions of the phase transition related to the background instability and describe the QCD phase diagram in the thermodynamic plane -- temperature $T$ and chemical potential $mu$. The Cornell potential behavior in this anisotropic model is also studied. The asymptotics of the Cornell potential at large distances strongly depend on the parameter of anisotropy and orientation. There is also a nontrivial dependence of the Cornell potential on the boundary conditions of the dilaton field and parameter of anisotropy. With the help of the boundary conditions for the dilaton field one fits the results of the lattice calculations for the string tension as a function of temperature in isotropic case and then generalize to the anisotropic one.
We present new anisotropic black brane solutions in 5D Einstein-dilaton-two-Maxwell system. The anisotropic background is specified by an arbitrary dynamical exponent $ u$, a nontrivial warp factor, a non-zero dilaton field, a non-zero time component
We discuss a general five-dimensional completely anisotropic holographic model with three different spatial scale factors, characterized by a Van der Waals-like phase transition between small and large black holes. A peculiar feature of the model is
We examine the statistical mechanics of a 1-dimensional gas of both adjoint and fundamental representation quarks which interact with each other through 1+1-dimensional U(N) gauge fields. Using large-N expansion we show that, when the density of fund
We study the T-{mu} phase diagram of anisotropic media, created in heavy-ion collisions (HIC). Such a statement of the problem is due to several indications that this media is anisotropic just after HIC. To study T-{mu} phase diagram we use holograph
Recently Herzog has shown that deconfinement of AdS/QCD can be realized, in the hard-wall model where the small radius region is removed in the asymptotically AdS space, via a first order Hawking-Page phase transition between a low temperature phase