ﻻ يوجد ملخص باللغة العربية
Optimizing modulation and detection strategies for a given channel is critical to maximize the throughput of a communication system. Such an optimization can be easily carried out analytically for channels that admit closed-form analytical models. However, this task becomes extremely challenging for nonlinear dispersive channels such as the optical fiber. End-to-end optimization through autoencoders (AEs) can be applied to define symbol-to-waveform (modulation) and waveform-to-symbol (detection) mappings, but so far it has been mainly shown for systems relying on approximate channel models. Here, for the first time, we propose an AE scheme applied to the full optical channel described by the nonlinear Schr{o}dinger equation (NLSE). Transmitter and receiver are jointly optimized through the split-step Fourier method (SSFM) which accurately models an optical fiber. In this first numerical analysis, the detection is performed by a neural network (NN), whereas the symbol-to-waveform mapping is aided by the nonlinear Fourier transform (NFT) theory in order to simplify and guide the optimization on the modulation side. This proof-of-concept AE scheme is thus benchmarked against a standard NFT-based system and a threefold increase in achievable distance (from 2000 to 6640 km) is demonstrated.
We investigate a modified split-step Fourier method (SSFM) by including low-pass filters in the linear steps. This method can simultaneously achieve a higher simulation accuracy and a slightly reduced complexity.
We present a novel end-to-end autoencoder-based learning for coherent optical communications using a parallelizable perturbative channel model. We jointly optimized constellation shaping and nonlinear pre-emphasis achieving mutual information gain of
The state-of-the-art automotive radars employ multidimensional discrete Fourier transforms (DFT) in order to estimate various target parameters. The DFT is implemented using the fast Fourier transform (FFT), at sample and computational complexity of
We demonstrate a fast numerical method of theoretical studies of skyrmion lattice or spiral order in magnetic materials with Dzyaloshinsky-Moriya interaction. The method is based on the Fourier expansion of the magnetization combined with a minimizat
Telemedicine refers to the use of information and communication technology to assist with medical information and services. In health care applications, high reliable communication links between the health care provider and the desired destination in