ﻻ يوجد ملخص باللغة العربية
Although Person Re-Identification has made impressive progress, difficult cases like occlusion, change of view-pointand similar clothing still bring great challenges. Besides overall visual features, matching and comparing detailed information is also essential for tackling these challenges. This paper proposes two key recognition patterns to better utilize the detail information of pedestrian images, that most of the existing methods are unable to satisfy. Firstly, Visual Clue Alignment requires the model to select and align decisive regions pairs from two images for pair-wise comparison, while existing methods only align regions with predefined rules like high feature similarity or same semantic labels. Secondly, the Conditional Feature Embedding requires the overall feature of a query image to be dynamically adjusted based on the gallery image it matches, while most of the existing methods ignore the reference images. By introducing novel techniques including correspondence attention module and discrepancy-based GCN, we propose an end-to-end ReID method that integrates both patterns into a unified framework, called CACE-Net((C)lue(A)lignment and (C)onditional (E)mbedding). The experiments show that CACE-Net achieves state-of-the-art performance on three public datasets.
Person reidentification (ReID) is a very hot research topic in machine learning and computer vision, and many person ReID approaches have been proposed; however, most of these methods assume that the same person has the same clothes within a short ti
Nowadays, deep learning is widely applied to extract features for similarity computation in person re-identification (re-ID) and have achieved great success. However, due to the non-overlapping between training and testing IDs, the difference between
Learning the distance metric between pairs of examples is of great importance for visual recognition, especially for person re-identification (Re-Id). Recently, the contrastive and triplet loss are proposed to enhance the discriminative power of the
In this work, we present a deep convolutional pyramid person matching network (PPMN) with specially designed Pyramid Matching Module to address the problem of person re-identification. The architecture takes a pair of RGB images as input, and outputs
Most state-of-the-art person re-identification (re-id) methods depend on supervised model learning with a large set of cross-view identity labelled training data. Even worse, such trained models are limited to only the same-domain deployment with sig