ﻻ يوجد ملخص باللغة العربية
Training large-scale image captioning (IC) models demands access to a rich and diverse set of training examples, gathered from the wild, often from noisy alt-text data. However, recent modeling approaches to IC often fall short in terms of performance in this case, because they assume a clean annotated dataset (as opposed to the noisier alt-text--based annotations), and employ an end-to-end generation approach, which often lacks both controllability and interpretability. We address these problems by breaking down the task into two simpler, more controllable tasks -- skeleton prediction and skeleton-based caption generation. Specifically, we show that selecting content words as skeletons} helps in generating improved and denoised captions when leveraging rich yet noisy alt-text--based uncurated datasets. We also show that the predicted English skeletons can be further cross-lingually leveraged to generate non-English captions, and present experimental results covering caption generation in French, Italian, German, Spanish and Hindi. We also show that skeleton-based prediction allows for better control of certain caption properties, such as length, content, and gender expression, providing a handle to perform human-in-the-loop semi-automatic corrections.
In recent years, the biggest advances in major Computer Vision tasks, such as object recognition, handwritten-digit identification, facial recognition, and many others., have all come through the use of Convolutional Neural Networks (CNNs). Similarly
Despite continuously improving performance, contemporary image captioning models are prone to hallucinating objects that are not actually in a scene. One problem is that standard metrics only measure similarity to ground truth captions and may not fu
Text-based image captioning (TextCap) which aims to read and reason images with texts is crucial for a machine to understand a detailed and complex scene environment, considering that texts are omnipresent in daily life. This task, however, is very c
Numerous online stock image libraries offer high quality yet copyright free images for use in marketing campaigns. To assist advertisers in navigating such third party libraries, we study the problem of automatically fetching relevant ad images given
There has been significant interest recently in learning multilingual word embeddings -- in which semantically similar words across languages have similar embeddings. State-of-the-art approaches have relied on expensive labeled data, which is unavail