ﻻ يوجد ملخص باللغة العربية
Object recognition is often viewed as a feedforward, bottom-up process in machine learning, but in real neural systems, object recognition is a complicated process which involves the interplay between two signal pathways. One is the parvocellular pathway (P-pathway), which is slow and extracts fine features of objects; the other is the magnocellular pathway (M-pathway), which is fast and extracts coarse features of objects. It has been suggested that the interplay between the two pathways endows the neural system with the capacity of processing visual information rapidly, adaptively, and robustly. However, the underlying computational mechanisms remain largely unknown. In this study, we build a computational model to elucidate the computational advantages associated with the interactions between two pathways. Our model consists of two convolution neural networks: one mimics the P-pathway, referred to as FineNet, which is deep, has small-size kernels, and receives detailed visual inputs; the other mimics the M-pathway, referred to as CoarseNet, which is shallow, has large-size kernels, and receives low-pass filtered or binarized visual inputs. The two pathways interact with each other via a Restricted Boltzmann Machine. We find that: 1) FineNet can teach CoarseNet through imitation and improve its performance considerably; 2) CoarseNet can improve the noise robustness of FineNet through association; 3) the output of CoarseNet can serve as a cognitive bias to improve the performance of FineNet. We hope that this study will provide insight into understanding visual information processing and inspire the development of new object recognition architectures.
Recently, there emerges a series of vision Transformers, which show superior performance with a more compact model size than conventional convolutional neural networks, thanks to the strong ability of Transformers to model long-range dependencies. Ho
Cross-modality generation is an emerging topic that aims to synthesize data in one modality based on information in a different modality. In this paper, we consider a task of such: given an arbitrary audio speech and one lip image of arbitrary target
Robust and accurate visual localization is a fundamental capability for numerous applications, such as autonomous driving, mobile robotics, or augmented reality. It remains, however, a challenging task, particularly for large-scale environments and i
This paper presents a vision system and a depth processing algorithm for DRC-HUBO+, the winner of the DRC finals 2015. Our system is designed to reliably capture 3D information of a scene and objects robust to challenging environment conditions. We a
High dynamic range (HDR) video reconstruction from sequences captured with alternating exposures is a very challenging problem. Existing methods often align low dynamic range (LDR) input sequence in the image space using optical flow, and then merge