ﻻ يوجد ملخص باللغة العربية
The increase in strangeness production with charged particle multiplicity, as seen by the ALICE collaboration at CERN in p-p, p-Pb and Pb-Pb collisions, is investigated in the hadron resonance gas model taking into account interactions among hadrons using S-matrix corrections based on known phase shift analyses. Strangeness conservation is taken into account in the framework of the canonical strangeness ensemble. A very good description is obtained for the variation of the strangeness content in the final state as a function of the number of charged hadrons in the mid-rapidity region using the same fixed temperature value as obtained in the most central Pb-Pb collisions. It is shown that the number of charged hadrons is linearly proportional to the volume of the system. For small multiplicities the canonical ensemble with local strangeness conservation restricted to mid-rapidity leads to a stronger suppression of (multi-)strange baryons than seen in the data. This is compensated by introducing a global conservation of strangeness in the whole phase-space which is parameterized by the canonical correlation volume larger than the fireball volume at the mid-rapidity. The results on comparing the hadron resonance gas model with and without S-matrix corrections, are presented in detail. It is shown that the interactions introduced by the phase shift analysis via the S-matrix formalism are essential for a better description of the yields data.
The transverse momentum ($p_{rm T}$) spectra in proton-proton collisions at $sqrt{s}$ = 7 TeV, measured by the ALICE experiment at the LHC are analyzed with a thermodynamically consistent Tsallis distribution. The information about the freeze-out sur
We present the energy spectra of the low lying doubly-charmed baryons using lattice quantum chromodynamics. We precisely predict the ground state mass of the charmed-strange Omega(cc) (1/2+) baryon to be 3712(11)(12) MeV which could well be the next
The charge radii and quadrupole moments of baryons with nonzero strangeness are calculated using a parametrization method based on the symmetries of the strong interaction.
The transverse momentum (mass) spectra of the multi-strange and non-multi-strange (i.e. other identified) particles in central gold-gold (Au-Au), lead-lead (Pb-Pb), argon-muriate (Ar-KCl) and nickel-nickel (Ni-Ni) collisions over a wide energy range
We report the multiplicity dependence of charged particle productions for $pi^{pm}$, $K^{pm}$, $p$, $overline{p}$ and $phi$ meson at $|y| < 1.0$ in p+p collisions at $sqrt{rm s}$ = 200 GeV with $rm PYTHIA$ simulation. The impact of parton multiple in