ﻻ يوجد ملخص باللغة العربية
Alloying enables engineering of the electronic structure of semiconductors for optoelectronic applications. Due to their similar lattice parameters, the two-dimensional semiconducting transition metal dichalcogenides of the MoWSeS group (MX2 where M= Mo or W and X=S or Se) can be grown as high-quality materials with low defect concentrations. Here we investigate the atomic and electronic structure of Mo(1-x)WxS2 alloys using a combination of high-resolution experimental techniques and simulations. Analysis of the Mo and W atomic positions in these alloys, grown by chemical vapour transport, shows that they are randomly distributed, consistent with Monte Carlo simulations that use interaction energies determined from first-principles calculations. Electronic structure parameters are directly determined from angle resolved photoemission spectroscopy measurements. These show that the spin-orbit splitting at the valence band edge increases linearly with W content from MoS2 to WS2, in agreement with linear-scaling density functional theory (LS-DFT) predictions. The spin-orbit splitting at the conduction band edge is predicted to reduce to zero at intermediate compositions. Despite this, polarisation-resolved photoluminescence spectra on monolayer Mo0.5W0.5S2 show significant circular dichroism, indicating that spin-valley locking is retained. These results demonstrate that alloying is an important tool for controlling the electronic structure of MX2 for spintronic and valleytronic applications.
In atomically thin transition metal dichalcogenide semiconductors, there is a crossover from indirect to direct bandgap as the thickness drops to one monolayer, which comes with a fast increase of the photoluminescence signal. Here, we show that for
Hexagonal boron nitride is the only substrate that has so far allowed graphene devices exhibiting micron-scale ballistic transport. Can other atomically flat crystals be used as substrates for making quality graphene heterostructures? Here we report
We present the results of resonant photoemission spectroscopy experiments on the Mo$_{1-x}$Re$_{x}$ alloy compositions spanning over two electronic topological transitions (ETT) at the critical concentrations $x_{C1}$ = 0.05 and $x_{C2}$ = 0.11. The
We derive electronic tight-binding Hamiltonians for strained graphene, hexagonal boron nitride and transition metal dichalcogenides based on Wannier transformation of {it ab initio} density functional theory calculations. Our microscopic models inclu
The binary Re$_{1-x}$Mo$_x$ alloys, known to cover the full range of solid solutions, were successfully synthesized and their crystal structures and physical properties investigated via powder x-ray diffraction, electrical resistivity, magnetic susce