ترغب بنشر مسار تعليمي؟ اضغط هنا

A super-Earth and a sub-Neptune orbiting the bright, quiet M3 dwarf TOI-1266

439   0   0.0 ( 0 )
 نشر من قبل Brice-Olivier Demory
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery and characterisation of a super-Earth and a sub-Neptune transiting the bright ($K=8.8$), quiet, and nearby (37 pc) M3V dwarf TOI-1266. We validate the planetary nature of TOI-1266 b and c using four sectors of TESS photometry and data from the newly-commissioned 1-m SAINT-EX telescope located in San Pedro Martir (Mexico). We also include additional ground-based follow-up photometry as well as high-resolution spectroscopy and high-angular imaging observations. The inner, larger planet has a radius of $R=2.37_{-0.12}^{+0.16}$ R$_{oplus}$ and an orbital period of 10.9 days. The outer, smaller planet has a radius of $R=1.56_{-0.13}^{+0.15}$ R$_{oplus}$ on an 18.8-day orbit. The data are found to be consistent with circular, co-planar and stable orbits that are weakly influenced by the 2:1 mean motion resonance. Our TTV analysis of the combined dataset enables model-independent constraints on the masses and eccentricities of the planets. We find planetary masses of $M_mathrm{p}$ = $13.5_{-9.0}^{+11.0}$ $mathrm{M_{oplus}}$ ($<36.8$ $mathrm{M_{oplus}}$ at 2-$sigma$) for TOI-1266 b and $2.2_{-1.5}^{+2.0}$ $mathrm{M_{oplus}}$ ($<5.7$ $mathrm{M_{oplus}}$ at 2-$sigma$) for TOI-1266 c. We find small but non-zero orbital eccentricities of $0.09_{-0.05}^{+0.06}$ ($<0.21$ at 2-$sigma$) for TOI-1266 b and $0.04pm0.03$ ($<0.10$ at 2-$sigma$) for TOI-1266 c. The equilibrium temperatures of both planets are of $413pm20$ K and $344pm16$ K, respectively, assuming a null Bond albedo and uniform heat redistribution from the day-side to the night-side hemisphere. The host brightness and negligible activity combined with the planetary system architecture and favourable planet-to-star radii ratios makes TOI-1266 an exquisite system for a detailed characterisation.



قيم البحث

اقرأ أيضاً

Dynamical histories of planetary systems, as well as atmospheric evolution of highly irradiated planets, can be studied by characterizing the ultra-short-period planet population, which the TESS mission is particularly well suited to discover. Here, we report on the follow-up of a transit signal detected in the TESS sector 19 photometric time series of the M3.0 V star TOI-1685 (2MASS J04342248+4302148). We confirm the planetary nature of the transit signal, which has a period of P_b=0.6691403+0.0000023-0.0000021 d, using precise radial velocity measurements taken with the CARMENES spectrograph. From the joint photometry and radial velocity analysis, we estimate the following parameters for TOI-1685 b: a mass of M_b=3.78+/-0.63 M_Earth, a radius of R_b=1.70+/-0.07 R_Earth, which together result in a bulk density of rho_b=4.21+0.95-0.82 g/cm3, and an equilibrium temperature of Teq_b=1069+/-16 K. TOI-1685 b is the least dense ultra-short period planet around an M dwarf known to date. TOI-1685 b is also one of the hottest transiting Earth-size planets with accurate dynamical mass measurements, which makes it a particularly attractive target for thermal emission spectroscopy. Additionally, we report a further non-transiting planet candidate in the system, TOI-1685[c], with an orbital period of P_[c]=9.02+0.10-0.12 d.
We report the Transiting Exoplanet Survey Satellite discovery of three small planets transiting one of the nearest and brightest M dwarf hosts to date, TOI-270 (TIC 259377017; K-mag 8.3; 22.5 parsec). The M3V-type star is transited by the super-Earth -sized TOI-270 b (1.247+0.089-0.083 R_earth) and the sub-Neptune-sized exoplanets TOI-270 c (2.42+-0.13 R_earth) and TOI-270 d (2.13+-0.12 R_earth). The planets orbit close to a mean-motion resonant chain, with periods (3.36, 5.66, and 11.38 days) near ratios of small integers (5:3 and 2:1). TOI-270 is a prime target for future studies since: 1) its near-resonance allows detecting transit timing variations for precise mass measurements and dynamical studies; 2) its brightness enables independent radial velocity mass measurements; 3) the outer planets are ideal for atmospheric characterisation via transmission spectroscopy; and 4) the quiet star enables future searches for habitable zone planets. Altogether, very few systems with small, temperate exoplanets are as suitable for such complementary and detailed characterisation as TOI-270.
We present the bright (V$_{mag} = 9.12$), multi-planet system TOI-431, characterised with photometry and radial velocities. We estimate the stellar rotation period to be $30.5 pm 0.7$ days using archival photometry and radial velocities. TOI-431b is a super-Earth with a period of 0.49 days, a radius of 1.28 $pm$ 0.04 R$_{oplus}$, a mass of $3.07 pm 0.35$ M$_{oplus}$, and a density of $8.0 pm 1.0$ g cm$^{-3}$; TOI-431d is a sub-Neptune with a period of 12.46 days, a radius of $3.29 pm 0.09$ R$_{oplus}$, a mass of $9.90^{+1.53}_{-1.49}$ M$_{oplus}$, and a density of $1.36 pm 0.25$ g cm$^{-3}$. We find a third planet, TOI-431c, in the HARPS radial velocity data, but it is not seen to transit in the TESS light curves. It has an $M sin i$ of $2.83^{+0.41}_{-0.34}$ M$_{oplus}$, and a period of 4.85 days. TOI-431d likely has an extended atmosphere and is one of the most well-suited TESS discoveries for atmospheric characterisation, while the super-Earth TOI-431b may be a stripped core. These planets straddle the radius gap, presenting an interesting case-study for atmospheric evolution, and TOI-431b is a prime TESS discovery for the study of rocky planet phase curves.
We confirm the planetary nature of TOI-1728b using a combination of ground-based photometry, near-infrared Doppler velocimetry and spectroscopy with the Habitable-zone Planet Finder.TOI-1728 is an old, inactive M0 star with teff{} $= 3980^{+31}_{-32} $ K, which hosts a transiting super Neptune at an orbital period of $sim$ 3.49 days. Joint fitting of the radial velocities and TESS and ground-based transits yields a planetary radius of $5.05_{-0.17}^{+0.16}$ R$_{oplus}$, mass $26.78_{-5.13}^{+5.43}$ M$_{oplus}$ and eccentricity $0.057_{-0.039}^{+0.054}$. We estimate the stellar properties, and perform a search for He 10830 AA absorption during the transit of this planet and claim a null detection with an upper limit of 1.1$%$ with 90% confidence. A deeper level of He 10830 AA ~ absorption has been detected in the planet atmosphere of GJ 3470b, a comparable gaseous planet. TOI-1728b is the largest super Neptune -- the intermediate subclass of planets between Neptune and the more massive gas-giant planets -- discovered around an M dwarf. With its relatively large mass and radius, TOI-1728 represents a valuable datapoint in the M-dwarf exoplanet mass-radius diagram, bridging the gap between the lighter Neptune-sized planets and the heavier Jovian planets known to orbit M-dwarfs. With a low bulk density of $1.14_{-0.24}^{+0.26}$ g/cm$^3$, and orbiting a bright host star (J $sim 9.6$, V $sim 12.4$), TOI-1728b is also a promising candidate for transmission spectroscopy both from the ground and from space, which can be used to constrain planet formation and evolutionary models.
We confirm the planetary nature of TOI-532b, using a combination of precise near-infrared radial velocities with the Habitable-zone Planet Finder, TESS light curves, ground based photometric follow-up, and high-contrast imaging. TOI-532 is a faint (J $sim 11.5$) metal-rich M dwarf with Teff = $3957pm69$ K and [Fe/H] = $0.38pm0.04$; it hosts a transiting gaseous planet with a period of $sim 2.3$ days. Joint fitting of the radial velocities with the TESS and ground-based transits reveal a planet with radius of $5.82pm0.19$ R$_{oplus}$, and a mass of $61.5_{-9.3}^{+9.7}$ M$_{oplus}$. TOI-532b is the largest and most massive super Neptune detected around an M dwarf with both mass and radius measurements, and it bridges the gap between the Neptune-sized planets and the heavier Jovian planets known to orbit M dwarfs. It also follows the previously noted trend between gas giants and host star metallicity for M dwarf planets. In addition, it is situated at the edge of the Neptune desert in the Radius--Insolation plane, helping place constraints on the mechanisms responsible for sculpting this region of planetary parameter space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا