ﻻ يوجد ملخص باللغة العربية
Miniaturized or even microscale generators that could effectively and persistently converse weak and random mechanical energy from environments into electricity promise huge applications in the internet of things, sensor networks, big data, personal health systems, artificial intelligence, etc. However, such generators havent appeared yet because either the current density, or persistence, or both of all reported attempts were too low to real applications. Here, we demonstrate a superlubric Schottky generator (SLSG) in microscale such that the sliding contact between a microsized graphite flake and an n-type silicon is in a structural superlubric state, namely a ultralow friction and wearless state. This SLSG generates a stable electrical current at a high density (~119 Am-2) for at least 5,000 cycles. Since no current decay and wear were observed during the entire experiment, we believe that the real persistence of the SLSG should be enduring or substantively unlimited. In addition, the observed results exclude the mechanism of friction excitation in our Schottky generator, and provide the first experimental support of the conjectured mechanism of depletion layer establishment and destruction (DLED). Furthermore, we demonstrate a physical process of the DLED mechanism by the use of a quasi-static semiconductor finite element simulation. Our work may guide and accelerate future SLSGs into real applications.
As the fast development of internet of things (IoTs), distributed sensors have been frequently used and the small and portable power sources are highly demanded. However, the present portable power source such as lithium battery has low capacity and
Traditionally, Schottky diodes are used statically in the electronic information industry but dynamic state Schottky diodes based applications have been rarely explored. Herein, a novel Schottky diode named moving Schottky diode generator has been de
After the electromagnetic generator, searching for novel electric generators without strong magnetic field is highly demanded. The generator without strong magnetic field calls for a physical picture distinct from the traditional generators. As the c
Semiconductors require stable doping for applications in transistors, optoelectronics, and thermoelectrics. However, this has been challenging for two-dimensional (2D) materials, where existing approaches are either incompatible with conventional sem
In this work it is reported a vertical electrolyte transistor (VET) whose structure is based on stacked layers as described below: bottom contact (source or drain) - channel - permeable intermediate electrode (drain or source) - ion gel (electrolyte