ترغب بنشر مسار تعليمي؟ اضغط هنا

Superlubric Schottky Generator in Microscale with High Current Density and Ultralong Life

107   0   0.0 ( 0 )
 نشر من قبل Huang Xuanyu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Miniaturized or even microscale generators that could effectively and persistently converse weak and random mechanical energy from environments into electricity promise huge applications in the internet of things, sensor networks, big data, personal health systems, artificial intelligence, etc. However, such generators havent appeared yet because either the current density, or persistence, or both of all reported attempts were too low to real applications. Here, we demonstrate a superlubric Schottky generator (SLSG) in microscale such that the sliding contact between a microsized graphite flake and an n-type silicon is in a structural superlubric state, namely a ultralow friction and wearless state. This SLSG generates a stable electrical current at a high density (~119 Am-2) for at least 5,000 cycles. Since no current decay and wear were observed during the entire experiment, we believe that the real persistence of the SLSG should be enduring or substantively unlimited. In addition, the observed results exclude the mechanism of friction excitation in our Schottky generator, and provide the first experimental support of the conjectured mechanism of depletion layer establishment and destruction (DLED). Furthermore, we demonstrate a physical process of the DLED mechanism by the use of a quasi-static semiconductor finite element simulation. Our work may guide and accelerate future SLSGs into real applications.



قيم البحث

اقرأ أيضاً

As the fast development of internet of things (IoTs), distributed sensors have been frequently used and the small and portable power sources are highly demanded. However, the present portable power source such as lithium battery has low capacity and need to be replaced or recharged frequently. A portable power source which can continuously generate electrical power in situ will be an idea solution. Herein, we demonstrate a wind driven semiconductor electricity generator based on a dynamic Schottky junction, which can output a continuous direct current with an average value of 4.4 mA (the maximum value of 8.4 mA) over 360 seconds. Compared with the previous metal/semiconductor generator, the output current is one thousand times higher. Furthermore, this wind driven generator has been explored to function as a turn counter due to its stable output and also to drive a graphene ultraviolet photodetector, which shows a responsivity of 35.8 A/W under the 365 nm ultraviolet light. Our research provides a feasible method to achieve wind power generation and power supply for distributed sensors in the future.
Traditionally, Schottky diodes are used statically in the electronic information industry but dynamic state Schottky diodes based applications have been rarely explored. Herein, a novel Schottky diode named moving Schottky diode generator has been de signed, which can convert mechanical energy into electrical energy with voltage output as high as 0.6V, by means of lateral movement between graphene/metal film and semiconductor, where the semiconductor can be non-piezoelectric materials. The mechanism is based on the built-in electric field separation of drifting electrons in moving van der Waals Schottky diode. The power output can be further increased in future through optimizing the Schottky diode. The graphene film/silicon moving van der Waals Schottky diode based generator behaves better stability. This direct-current generator has the potential of converting mechanical efficiently and vibrational energy into electricity and enables many promising applications.
After the electromagnetic generator, searching for novel electric generators without strong magnetic field is highly demanded. The generator without strong magnetic field calls for a physical picture distinct from the traditional generators. As the c ounterpart of the static PN junction has been widely used in the integrated circuits, we develop an electric generator named dynamic PN generator with a high current density and voltage output, which converts mechanical energy into electricity by sliding two semiconductors with different Fermi level. A dynamic N-GaAs/SiO2/P-Si generator with the open-circuit voltage of 3.1 V and short-circuit density of 1.0 A/m2 have been achieved. The physical mechanism of the dynamic PN generator is proposed based on the built-in electric field bounding back diffusing carriers in dynamic PN junctions, which breaks the equilibrium between drift and diffusion current in the PN junction. Moreover, the dynamic MoS2/AlN/Si generator with the open-circuit voltage of 5.1 V and short-circuit density of 112 A/m2 (11.2 mA/cm2) have also been achieved, which can effectively output a direct-current and light up a blue light-emitting diode directly. This dynamic MoS2/AlN/Si generator can continuously work for hours without obvious degradation, demonstrating its unique mechanism and potential applications in many fields where the mechanical energy is available.
Semiconductors require stable doping for applications in transistors, optoelectronics, and thermoelectrics. However, this has been challenging for two-dimensional (2D) materials, where existing approaches are either incompatible with conventional sem iconductor processing or introduce time-dependent, hysteretic behavior. Here we show that low temperature (< 200$^circ$ C) sub-stoichiometric AlO$_x$ provides a stable n-doping layer for monolayer MoS$_2$, compatible with circuit integration. This approach achieves carrier densities > 2x10$^{13}$ 1/cm$^2$, sheet resistance as low as ~7 kOhm/sq, and good contact resistance ~480 Ohm.um in transistors from monolayer MoS$_2$ grown by chemical vapor deposition. We also reach record current density of nearly 700 uA/um (>110 MA/cm$^2$) in this three-atom-thick semiconductor while preserving transistor on/off current ratio > $10^6$. The maximum current is ultimately limited by self-heating and could exceed 1 mA/um with better device heat sinking. With their 0.1 nA/um off-current, such doped MoS$_2$ devices approach several low-power transistor metrics required by the international technology roadmap
591 - Keli Fabiana Seidel 2019
In this work it is reported a vertical electrolyte transistor (VET) whose structure is based on stacked layers as described below: bottom contact (source or drain) - channel - permeable intermediate electrode (drain or source) - ion gel (electrolyte gate dielectric) - gate top contact. This VET depicts versatility to work as Electrolyte-Gated Vertical Organic Field Effect Transistor (Electrolyte-Gated VOFET) or Vertical Organic Electrochemical Transistor (VOECT) as never reported before. The distinction of these operation modes is regarding to the transistor transconductance that occurs due to induced charge carriers or ionic current, respectively. Both modes of operation show that this VET is able to work at very low voltage range and drive a high current density. These observed features make VETs a good candidate for applications in iontronic devices, bio-sensors and/or very low power optoelectronic circuits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا