ترغب بنشر مسار تعليمي؟ اضغط هنا

User documentation and training at Belle II

116   0   0.0 ( 0 )
 نشر من قبل Ilya Komarov
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Belle II is a rapidly growing collaboration with members from one hundred and nineteen institutes spread around the globe. The software development team of the experiment, as well as the software users, are very much decentralised. Together with the active development of the software, such decentralisation makes the adoption of the latest software releases by users an essential, but quite challenging task. To ensure the relevance of the documentation, we adopted the policy of in-code documentation and configured a website that allows us to tie the documentation to given releases. To prevent tutorials from becoming outdated, we covered them by unit-tests. For the user support, we use a question and answer service that not only reduces repetition of the same questions but also turned out to be a place for discussions among the experts. A prototype of a metasearch engine for the different sources of documentation has been developed. For training of the new users, we organise centralised StarterKit workshops attached to the collaboration meetings. The materials of the workshops are later used for self-education and organisation of local training sessions.



قيم البحث

اقرأ أيضاً

This paper describes the track-finding algorithm that is used for event reconstruction in the Belle II experiment operating at the SuperKEKB B-factory in Tsukuba, Japan. The algorithm is designed to balance the requirements of a high efficiency to fi nd charged particles with a good track parameter resolution, a low rate of spurious tracks, and a reasonable demand on CPU resources. The software is implemented in a flexible, modular manner and employs a diverse selection of global and local track-finding algorithms to achieve an optimal performance.
175 - Elisabetta Prencipe 2018
The search for multi-quark states beyond the constituent quark model (CQM) has resulted in the discovery of many new exotic states, starting with the observation of the X(3872), discovered by Belle in 2003. Also in the sector of charm-strange physics the CQM does not seem to describe properly all spectrum, despite of theoretical expectations. These new forms of quark bounds clearly show that mesons and baryons are not the only possibilities to be considered. We shortly report in this paper selected recent results on searching for such states at Belle, with the perspectives in the hadron physics program at the Belle II experiment.
84 - Bryan Fulsom 2017
Quarkonium is the bound state of a heavy quark and its anti-quark counterpart. The study of this system has experienced a renaissance thanks to results from e+e- collider experiments, including discoveries of long-predicted conventional quarkonia, an d unusual states consisting of four quarks. The Belle Experiment operated at KEK in Japan from 1999-2010. Analysis of the collected data continues to produce new findings. The Belle II experiment is a substantial upgrade of both the Belle detector and the KEKB accelerator, aiming to collect 50 times more data beginning in 2018. This talk presented recent Belle results related to hadronic and radiative decays in the bottomonium system. It described the capabilities of Belle II to explore these topics, with a particular focus on the physics reach of the first data, where unique opportunities exist to make an immediate impact in this area.
Many dark matter models generically predict invisible and displaced signatures at Belle II, but even striking events may be missed by the currently implemented search programme because of inefficient trigger algorithms. Of particular interest are fin al states with a single photon accompanied by missing energy and a displaced pair of electrons, muons, or hadrons. We argue that a displaced vertex trigger will be essential to achieve optimal sensitivity at Belle II. To illustrate this point, we study a simple but well-motivated model of thermal inelastic dark matter in which this signature naturally occurs and show that otherwise inaccessible regions of parameter space can be tested with such a search. We also evaluate the sensitivity of single-photon searches at BaBar and Belle II to this model and provide detailed calculations of the relic density target.
The QCD axion is a well-motivated addition to the standard model to solve the strong $CP$ problem. If the axion acquires mass dominantly from a hidden sector, it can be as heavy as $O(1)$ GeV, and the decay constant can be as low as $O(100)$ GeV with out running into the axion quality problem. We propose new search strategies for such heavy QCD axions at the Belle II experiment, where the axions are expected to be produced via $Bto K a$. We find that a subsequent decay $ato 3pi$ with a displaced vertex leads to a unique signal with essentially no background, and that a dedicated search can explore the range $O(1-$$10)$ TeV of decay-constant values. We also show that $ato gammagamma$ can cover a significant portion of currently unexplored region of $150 lesssim m_a lesssim 500$ MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا