ﻻ يوجد ملخص باللغة العربية
We present a stochastic quantum computing algorithm that can prepare any eigenvector of a quantum Hamiltonian within a selected energy interval $[E-epsilon, E+epsilon]$. In order to reduce the spectral weight of all other eigenvectors by a suppression factor $delta$, the required computational effort scales as $O[|log delta|/(p epsilon)]$, where $p$ is the squared overlap of the initial state with the target eigenvector. The method, which we call the rodeo algorithm, uses auxiliary qubits to control the time evolution of the Hamiltonian minus some tunable parameter $E$. With each auxiliary qubit measurement, the amplitudes of the eigenvectors are multiplied by a stochastic factor that depends on the proximity of their energy to $E$. In this manner, we converge to the target eigenvector with exponential accuracy in the number of measurements. In addition to preparing eigenvectors, the method can also compute the full spectrum of the Hamiltonian. We illustrate the performance with several examples. For energy eigenvalue determination with error $epsilon$, the computational scaling is $O[(log epsilon)^2/(p epsilon)]$. For eigenstate preparation, the computational scaling is $O(log Delta/p)$, where $Delta$ is the magnitude of the orthogonal component of the residual vector. The speed for eigenstate preparation is exponentially faster than that for phase estimation or adiabatic evolution.
We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster a
We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and
We question whether the measurement based quantum computing algorithm is in fact Grovers algorithm or simply a similar oracular search method. The two algorithms share several qualitative features especially in the case of the trivial 4 element searc
We find that the Measurement Based Quantum Computing (MBQC) search algorithm on an unsorted list is not the same as Grovers search algorithm (GSA).
We present a novel application of the HHL (Harrow-Hassidim-Lloyd) algorithm -- a quantum algorithm solving systems of linear equations -- in solving an open problem about quantum random walks, namely computing hitting (or absorption) probabilities of