ترغب بنشر مسار تعليمي؟ اضغط هنا

Referenced Thermodynamic Integration for Bayesian Model Selection: Application to COVID-19 Model Selection

97   0   0.0 ( 0 )
 نشر من قبل Iwona Hawryluk
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Model selection is a fundamental part of the applied Bayesian statistical methodology. Metrics such as the Akaike Information Criterion are commonly used in practice to select models but do not incorporate the uncertainty of the models parameters and can give misleading choices. One approach that uses the full posterior distribution is to compute the ratio of two models normalising constants, known as the Bayes factor. Often in realistic problems, this involves the integration of analytically intractable, high-dimensional distributions, and therefore requires the use of stochastic methods such as thermodynamic integration (TI). In this paper we apply a variation of the TI method, referred to as referenced TI, which computes a single models normalising constant in an efficient way by using a judiciously chosen reference density. The advantages of the approach and theoretical considerations are set out, along with explicit pedagogical 1 and 2D examples. Benchmarking is presented with comparable methods and we find favourable convergence performance. The approach is shown to be useful in practice when applied to a real problem - to perform model selection for a semi-mechanistic hierarchical Bayesian model of COVID-19 transmission in South Korea involving the integration of a 200D density.



قيم البحث

اقرأ أيضاً

A rapid growth in spatial open datasets has led to a huge demand for regression approaches accommodating spatial and non-spatial effects in big data. Regression model selection is particularly important to stably estimate flexible regression models. However, conventional methods can be slow for large samples. Hence, we develop a fast and practical model-selection approach for spatial regression models, focusing on the selection of coefficient types that include constant, spatially varying, and non-spatially varying coefficients. A pre-processing approach, which replaces data matrices with small inner products through dimension reduction dramatically accelerates the computation speed of model selection. Numerical experiments show that our approach selects the model accurately and computationally efficiently, highlighting the importance of model selection in the spatial regression context. Then, the present approach is applied to open data to investigate local factors affecting crime in Japan. The results suggest that our approach is useful not only for selecting factors influencing crime risk but also for predicting crime events. This scalable model selection will be key to appropriately specifying flexible and large-scale spatial regression models in the era of big data. The developed model selection approach was implemented in the R package spmoran.
Updating observations of a signal due to the delays in the measurement process is a common problem in signal processing, with prominent examples in a wide range of fields. An important example of this problem is the nowcasting of COVID-19 mortality: given a stream of reported counts of daily deaths, can we correct for the delays in reporting to paint an accurate picture of the present, with uncertainty? Without this correction, raw data will often mislead by suggesting an improving situation. We present a flexible approach using a latent Gaussian process that is capable of describing the changing auto-correlation structure present in the reporting time-delay surface. This approach also yields robust estimates of uncertainty for the estimated nowcasted numbers of deaths. We test assumptions in model specification such as the choice of kernel or hyper priors, and evaluate model performance on a challenging real dataset from Brazil. Our experiments show that Gaussian process nowcasting performs favourably against both comparable methods, and against a small sample of expert human predictions. Our approach has substantial practical utility in disease modelling -- by applying our approach to COVID-19 mortality data from Brazil, where reporting delays are large, we can make informative predictions on important epidemiological quantities such as the current effective reproduction number.
We compare two major approaches to variable selection in clustering: model selection and regularization. Based on previous results, we select the method of Maugis et al. (2009b), which modified the method of Raftery and Dean (2006), as a current stat e of the art model selection method. We select the method of Witten and Tibshirani (2010) as a current state of the art regularization method. We compared the methods by simulation in terms of their accuracy in both classification and variable selection. In the first simulation experiment all the variables were conditionally independent given cluster membership. We found that variable selection (of either kind) yielded substantial gains in classification accuracy when the clusters were well separated, but few gains when the clusters were close together. We found that the two variable selection methods had comparable classification accuracy, but that the model selection approach had substantially better accuracy in selecting variables. In our second simulation experiment, there were correlations among the variables given the cluster memberships. We found that the model selection approach was substantially more accurate in terms of both classification and variable selection than the regularization approach, and that both gave more accurate classifications than $K$-means without variable selection.
The location-scale model is usually present in physics and chemistry in connection to the Birge ratio method for the adjustment of fundamental physical constants such as the Planck constant or the Newtonian constant of gravitation, while the random e ffects model is the commonly used approach for meta-analysis in medicine. These two competitive models are used to increase the quoted uncertainties of the measurement results to make them consistent. The intrinsic Bayes factor (IBF) is derived for the comparison of the random effects model to the location-scale model, and we answer the question which model performs better for the determination of the Newtonian constant of gravitation. The results of the empirical illustration support the application of the Birge ratio method which is currently used in the adjustment of the CODATA 2018 value for the Newtonian constant of gravitation together with its uncertainty. The results of the simulation study illustrate that the suggested procedure for model selection is decisive even when data consist of a few measurement results.
Microorganisms play critical roles in human health and disease. It is well known that microbes live in diverse communities in which they interact synergistically or antagonistically. Thus for estimating microbial associations with clinical covariates , multivariate statistical models are preferred. Multivariate models allow one to estimate and exploit complex interdependencies among multiple taxa, yielding more powerful tests of exposure or treatment effects than application of taxon-specific univariate analyses. In addition, the analysis of microbial count data requires special attention because data commonly exhibit zero inflation. To meet these needs, we developed a Bayesian variable selection model for multivariate count data with excess zeros that incorporates information on the covariance structure of the outcomes (counts for multiple taxa), while estimating associations with the mean levels of these outcomes. Although there has been a great deal of effort in zero-inflated models for longitudinal data, little attention has been given to high-dimensional multivariate zero-inflated data modeled via a general correlation structure. Through simulation, we compared performance of the proposed method to that of existing univariate approaches, for both the binary and count parts of the model. When outcomes were correlated the proposed variable selection method maintained type I error while boosting the ability to identify true associations in the binary component of the model. For the count part of the model, in some scenarios the the univariate method had higher power than the multivariate approach. This higher power was at a cost of a highly inflated false discovery rate not observed with the proposed multivariate method. We applied the approach to oral microbiome data from the Pediatric HIV/AIDS Cohort Oral Health Study and identified five species (of 44) associated with HIV infection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا