ترغب بنشر مسار تعليمي؟ اضغط هنا

Survival Analysis via Ordinary Differential Equations

320   0   0.0 ( 0 )
 نشر من قبل Weijing Tang
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper introduces a general framework for survival analysis based on ordinary differential equations (ODE). Specifically, this framework unifies many existing survival models, including proportional hazards models, linear transformation models, accelerated failure time models, and time-varying coefficient models as special cases. Such a unified framework provides a novel perspective on modeling censored data and offers opportunities for designing new and more flexible survival model structures. Further, the aforementioned existing survival models are traditionally estimated by procedures that suffer from lack of scalability, statistical inefficiency, or implementation difficulty. Based on well-established numerical solvers and sensitivity analysis tools for ODEs, we propose a novel, scalable, and easy-to-implement general estimation procedure that is applicable to a wide range of models. In particular, we develop a sieve maximum likelihood estimator for a general semi-parametric class of ODE models as an illustrative example. We also establish a general sieve M-theorem for bundled parameters and show that the proposed sieve estimator is consistent and asymptotically normal, and achieves the semi-parametric efficiency bound. The finite sample performance of the proposed estimator is examined in simulation studies and a real-world data example.



قيم البحث

اقرأ أيضاً

80 - Quentin Clairon 2018
We present a parameter estimation method in Ordinary Differential Equation (ODE) models. Due to complex relationships between parameters and states the use of standard techniques such as nonlinear least squares can lead to the presence of poorly iden tifiable parameters. Moreover, ODEs are generally approximations of the true process and the influence of misspecification on inference is often neglected. Methods based on control theory have emerged to regularize the ill posed problem of parameter estimation in this context. However, they are computationally intensive and rely on a nonparametric state estimator known to be biased in the sparse sample case. In this paper, we construct criteria based on discrete control theory which are computationally efficient and bypass the presmoothing step of signal estimation while retaining the benefits of control theory for estimation. We describe how the estimation problem can be turned into a control one and present the numerical methods used to solve it. We show convergence of our estimator in the parametric and well-specified case. For small sample sizes, numerical experiments with models containing poorly identifiable parameters and with various sources of model misspecification demonstrate the acurracy of our method. We finally test our approach on a real data example.
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box di fferential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.
We propose a novel approach to the analysis of covariance operators making use of concentration inequalities. First, non-asymptotic confidence sets are constructed for such operators. Then, subsequent applications including a k sample test for equali ty of covariance, a functional data classifier, and an expectation-maximization style clustering algorithm are derived and tested on both simulated and phoneme data.
99 - Suyong Kim , Weiqi Ji , Sili Deng 2021
Neural Ordinary Differential Equations (ODE) are a promising approach to learn dynamic models from time-series data in science and engineering applications. This work aims at learning Neural ODE for stiff systems, which are usually raised from chemic al kinetic modeling in chemical and biological systems. We first show the challenges of learning neural ODE in the classical stiff ODE systems of Robertsons problem and propose techniques to mitigate the challenges associated with scale separations in stiff systems. We then present successful demonstrations in stiff systems of Robertsons problem and an air pollution problem. The demonstrations show that the usage of deep networks with rectified activations, proper scaling of the network outputs as well as loss functions, and stabilized gradient calculations are the key techniques enabling the learning of stiff neural ODE. The success of learning stiff neural ODE opens up possibilities of using neural ODEs in applications with widely varying time-scales, like chemical dynamics in energy conversion, environmental engineering, and the life sciences.
This paper tackles the problem of detecting abrupt changes in the mean of a heteroscedastic signal by model selection, without knowledge on the variations of the noise. A new family of change-point detection procedures is proposed, showing that cross -validation methods can be successful in the heteroscedastic framework, whereas most existing procedures are not robust to heteroscedasticity. The robustness to heteroscedasticity of the proposed procedures is supported by an extensive simulation study, together with recent theoretical results. An application to Comparative Genomic Hybridization (CGH) data is provided, showing that robustness to heteroscedasticity can indeed be required for their analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا