ﻻ يوجد ملخص باللغة العربية
We study Grobner degenerations of Schubert varieties inside flag varieties. We consider toric degenerations of flag varieties induced by matching fields and semi-standard Young tableaux. We describe an analogue of matching field ideals for Schubert varieties inside the flag variety and give a complete characterization of toric ideals among them. We use a combinatorial approach to standard monomial theory to show that block diagonal matching fields give rise to toric degenerations. Our methods and results use the combinatorics of permutations associated to Schubert varieties, matching fields and their corresponding tableaux.
Richardson varieties are obtained as intersections of Schubert and opposite Schubert varieties. We provide a new family of toric degenerations of Richardson varieties inside Grassmannians by studying Grobner degenerations of their corresponding ideal
We study standard monomial bases for Richardson varieties inside the flag variety. In general, writing down a standard monomial basis for a Richardson variety can be challenging, as it involves computing so-called defining chains or key tableaux. How
In the present paper, we prove that the toric ideals of certain $s$-block diagonal matching fields have quadratic Grobner bases. Thus, in particular, those are quadratically generated. By using this result, we provide a new family of toric degenerations of Grassmannians.
In this paper we study monomial ideals attached to posets, introduce generalized Hibi rings and investigate their algebraic and homological properties. The main tools to study these objects are Groebner basis theory, the concept of sortability due to
Regular semisimple Hessenberg varieties are a family of subvarieties of the flag variety that arise in number theory, numerical analysis, representation theory, algebraic geometry, and combinatorics. We give a Giambelli formula expressing the classes