ﻻ يوجد ملخص باللغة العربية
With the development of remote sensing technology, the acquisition of remote sensing images is easier and easier, which provides sufficient data resources for the task of detecting remote sensing objects. However, how to detect objects quickly and accurately from many complex optical remote sensing images is a challenging hot issue. In this paper, we propose an efficient anchor free object detector, CenterFPANet. To pursue speed, we use a lightweight backbone and introduce the asymmetric revolution block. To improve the accuracy, we designed the FPA module, which links the feature maps of different levels, and introduces the attention mechanism to dynamically adjust the weights of each level of feature maps, which solves the problem of detection difficulty caused by large size range of remote sensing objects. This strategy can improve the accuracy of remote sensing image object detection without reducing the detection speed. On the DOTA dataset, CenterFPANet mAP is 64.00%, and FPS is 22.2, which is close to the accuracy of the anchor-based methods currently used and much faster than them. Compared with Faster RCNN, mAP is 6.76% lower but 60.87% faster. All in all, CenterFPANet achieves a balance between speed and accuracy in large-scale optical remote sensing object detection.
Detection of objects is extremely important in various aerial vision-based applications. Over the last few years, the methods based on convolution neural networks have made substantial progress. However, because of the large variety of object scales,
For high spatial resolution (HSR) remote sensing images, bitemporal supervised learning always dominates change detection using many pairwise labeled bitemporal images. However, it is very expensive and time-consuming to pairwise label large-scale bi
Arising from the various object types and scales, diverse imaging orientations, and cluttered backgrounds in optical remote sensing image (RSI), it is difficult to directly extend the success of salient object detection for nature scene image to the
Despite the remarkable advances in visual saliency analysis for natural scene images (NSIs), salient object detection (SOD) for optical remote sensing images (RSIs) still remains an open and challenging problem. In this paper, we propose an end-to-en
With the rapid development of deep learning, many deep learning-based approaches have made great achievements in object detection task. It is generally known that deep learning is a data-driven method. Data directly impact the performance of object d