We show that accreting black hole systems could be sources for keV light dark matter flux through several different mechanisms. We discuss two types of systems: coronal thermal plasmas around supermassive black holes in active galactic nuclei (AGNs), and accretion disks of stellar-mass X-ray black hole binaries (BHBs). We explore how these black hole systems may produce keV light dark matter fluxes and find that in order to account for the XENON1T excess, the dark fluxes from the observed AGNs and BHBs sources have to exceed the Eddington limit. We also extend the black hole mass region to primordial black holes (PBHs) and discuss the possibility of contributing to keV light dark flux via superradiance or Hawking radiation of PBHs. Besides, black holes can be good accelerators to accrete and boost heavy dark matter particles. If considering collisions or dark electromagnetism, those particles could then escape and reach the benchmark speed of 0.1c at the XENON1T detector.