ﻻ يوجد ملخص باللغة العربية
We introduce a novel solver to significantly reduce the size of a geometric operator while preserving its spectral properties at the lowest frequencies. We use chordal decomposition to formulate a convex optimization problem which allows the user to control the operator sparsity pattern. This allows for a trade-off between the spectral accuracy of the operator and the cost of its application. We efficiently minimize the energy with a change of variables and achieve state-of-the-art results on spectral coarsening. Our solver further enables novel applications including volume-to-surface approximation and detaching the operator from the mesh, i.e., one can produce a mesh tailormade for visualization and optimize an operator separately for computation.
We introduce a novel approach to measure the behavior of a geometric operator before and after coarsening. By comparing eigenvectors of the input operator and its coarsened counterpart, we can quantitatively and visually analyze how well the spectral
Photographers routinely compose multiple manipulated photos of the same scene (layers) into a single image, which is better than any individual photo could be alone. Similarly, 3D artists set up rendering systems to produce layered images to contain
We present a simple and efficient method for refining maps or correspondences by iterative upsampling in the spectral domain that can be implemented in a few lines of code. Our main observation is that high quality maps can be obtained even if the in
This paper presents a new curved layer volume decomposition method for multi-axis support-free printing of freeform solid parts. Given a solid model to be printed that is represented as a tetrahedral mesh, we first establish a geodesic distance field
We present a palette-based framework for color composition for visual applications. Color composition is a critical aspect of visual applications in art, design, and visualization. The color wheel is often used to explain pleasing color combinations