ﻻ يوجد ملخص باللغة العربية
The most extreme active galactic nuclei (AGN) are the radio active ones whose relativistic jet propagates close to our line of sight. These objects were first classified according to their emission line features into flat-spectrum radio quasars (FSRQs) and BL Lacertae objects (BL Lacs). More recently, observations revealed a trend between these objects known as the emph{blazar sequence}, along with an anti-correlation between the observed power and the frequency of the synchrotron peak. In the present work, we propose a fairly simple idea that could account for the whole blazar population: all jets are launched with similar energy per baryon, independently of their power. In the case of FSRQs, the most powerful jets, manage to accelerate to high bulk Lorentz factors, as observed in the radio. As a result, they have a rather modest magnetization in the emission region, resulting in magnetic reconnection injecting a steep particle energy distribution and, consequently, steep emission spectra in the $gamma$-rays. For the weaker jets, namely BL Lacs, the opposite holds true; i.e., the jet does not achieve a very high bulk Lorentz factor, leading to more magnetic energy available for non-thermal particle acceleration, and harder emission spectra at frequencies $gtrsim$ GeV. In this scenario, we recover all observable properties of blazars with our simulations, including the emph{blazar sequence} for models with mild baryon loading ($50 lesssim mu lesssim 80$). This interpretation of the blazar population, therefore, tightly constrains the energy per baryon of blazar jets regardless of their accretion rate.
In this paper we propose a way to use optical polarisation observations to provide independent constraints and guide to the modelling of the spectral energy distribution (SED) of blazars, which is particularly useful when two-zone models are required
The concept of highly relativistic electrons confined to blobs that are moving out with modestly relativistic speeds is often invoked to explain high energy blazar observations. The important parameters in this model such as the bulk Lorentz factor o
Being dominated by non-thermal (synchrotron and inverse Compton) emission from a relativistic jet, blazars offer important clues to the structure and radiative processes in extragalactic jets. Crucial information is provided by blazars spectral energ
Fermi-LAT analyses show that the gamma-ray photon spectral indices Gamma_gamma of a large sample of blazars correlate with the vFv peak synchrotron frequency v_s according to the relation Gamma_gamma = d - k log v_s. The same function, with different
Rapid and luminous flares of non-thermal radiation observed in blazars require an efficient mechanism of energy dissipation and particle acceleration in relativistic active galactic nuclei (AGN) jets. Particle acceleration in relativistic magnetic re