ﻻ يوجد ملخص باللغة العربية
We consider theories containing scalar fields interacting with vector or with tensor degrees of freedom, equipped with symmetries that prevent the propagation of linearized scalar excitations around solutions of the equations of motion. We first study the implications of such symmetries for building vector theories that break Abelian gauge invariance without necessarily exciting longitudinal scalar fluctuations in flat space. We then examine scalar-tensor theories in curved space, and relate the symmetries we consider with a non-linear realization of broken space-time symmetries acting on scalar modes. We determine sufficient conditions on the space-time geometry to avoid the propagation of scalar fluctuations. We analyze linearized perturbations around spherically symmetric black holes, proving the absence of scalar excitations, and pointing out modifications in the dynamics of spin-2 fluctuations with respect to Einstein gravity. We then study consequences of this set-up for the dark energy problem, determining scalar constraints on cosmological configurations that can lead to self-accelerating universes whose expansion is insensitive to the value of the bare cosmological constant.
We reconsider the issue of whether scalar-tensor theories can admit stable wormhole configurations supported by a non-trivial radial profile for the scalar field. Using a recently proposed effective theory for perturbations around static, spherically
A new systematic approach extending the notion of frames to the Palatini scalar-tensor theories of gravity in various dimensions n>2 is proposed. We impose frame transformation induced by the group action which includes almost-geodesic and conformal
The Pauli--Villars regularization procedure confirms and sharpens the conclusions reached previously by covariant point splitting. The divergences in the stress tensor of a quantized scalar field interacting with a static scalar potential are isolate
Employing the method of Wigner functions on curved spaces, we study classical kinetic (Boltzmann-like) equations of distribution functions for a real scalar field with the Lifshitz scaling. In particular, we derive the kinetic equation for $z=2$ on g
We develop the general theory of Noether symmetries for constrained systems. In our derivation, the Dirac bracket structure with respect to the primary constraints appears naturally and plays an important role in the characterization of the conserved