ﻻ يوجد ملخص باللغة العربية
The interest in milk originating from donkeys is growing worldwide due to its claimed functional and nutritional properties, especially for sensitive population groups, such as infants with cow milk protein allergy. The current study aimed to assess the microbiological quality of donkey milk produced in a donkey farm in Cyprus using cultured-based and high-throughput sequencing (HTS) techniques. The culture-based microbiological analysis showed very low microbial counts, while important food-borne pathogens were not detected in any sample. In addition, HTS was applied to characterize the bacterial communities of donkey milk samples. Donkey milk was mostly comprised of: Gram-negative Proteobacteria, including Sphingomonas, Pseudomonas Mesorhizobium and Acinetobacter; lactic acid bacteria, including Lactobacillus and Streptococcus; the endospores forming Clostridium; and the environmental genera Flavobacterium and Ralstonia, detected in lower relative abundances. The results of the study support existing findings that donkey milk contains mostly Gram-negative bacteria. Moreover, it raises questions regarding the contribution: a) of antimicrobial agents (i.e. lysozyme, peptides) in shaping the microbial communities and b) of the bacterial microbiota to the functional value of donkey milk.
We present two different approaches for modeling the spread of the COVID-19 pandemic. Both approaches are based on the population classes susceptible, exposed, infectious, quarantined, and recovered and allow for an arbitrary number of subgroups with
Swarm Intelligence is a metaheuristic optimization approach that has become very predominant over the last few decades. These algorithms are inspired by animals physical behaviors and their evolutionary perceptions. The simplicity of these algorithms
With the development of high throughput sequencing technology, it becomes possible to directly analyze mutation distribution in a genome-wide fashion, dissociating mutation rate measurements from the traditional underlying assumptions. Here, we seque
Motivation: Capillary electrophoresis (CE) of nucleic acids is a workhorse technology underlying high-throughput genome analysis and large-scale chemical mapping for nucleic acid structural inference. Despite the wide availability of CE-based instrum
One way to interject knowledge into clinically impactful forecasting is to use data assimilation, a nonlinear regression that projects data onto a mechanistic physiologic model, instead of a set of functions, such as neural networks. Such regressions