ﻻ يوجد ملخص باللغة العربية
The infrared spectroscopy and dynamics of -CO labels in wild type and mutant insulin monomer and dimer are characterized from molecular dynamics simulations using validated force fields. It is found that the spectroscopy of monomeric and dimeric forms in the region of the amide-I vibration differs for residues B24-B26 and D24-D26, which are involved in dimerization of the hormone. Also, the spectroscopic signatures change for mutations at position B24 from phenylalanine - which is conserved in many organisms and known to play a central role in insulin aggregation - to alanine or glycine. Using three different methods to determine the frequency trajectories - solving the nuclear Schrodinger equation on an effective 1-dimensional potential energy curve, instantaneous normal modes, and using parametrized frequency maps - lead to the same overall conclusions. The spectroscopic response of monomeric WT and mutant insulin differs from that of their respective dimers and the spectroscopy of the two monomers in the dimer is also not identical. For the WT and F24A and F24G monomers spectroscopic shifts are found to be $sim 20$ cm$^{-1}$ for residues (B24 to B26) located at the dimerization interface. Although the crystal structure of the dimer is that of a symmetric homodimer, dynamically the two monomers are not equivalent on the nanosecond time scale. Together with earlier work on the thermodynamic stability of the WT and the same mutants it is concluded that combining computational and experimental infrared spectroscopy provides a potentially powerful way to characterize the aggregation state and dimerization energy of modified insulins.
We develop a new model of insulin-glucose dynamics for forecasting blood glucose in type 1 diabetics. We augment an existing biomedical model by introducing time-varying dynamics driven by a machine learning sequence model. Our model maintains a phys
We derive approximate equations of motion for excited state dynamics of a multilevel open quantum system weakly interacting with light to describe fluorescence detected single molecule spectra. Based on the Frenkel exciton theory, we construct a mode
Background: Distinction of IDH mutant and wildtype GBMs is challenging on MRI, since conventional imaging shows considerable overlap. While few studies employed deep-learning in a mixed low/high grade glioma population, a GBM-specific model is still
Groups of beating flagella or cilia often synchronize so that neighboring filaments have identical frequencies and phases. A prime example is provided by the unicellular biflagellate Chlamydomonas reinhardtii, which typically displays synchronous in-
We study by simulation the physics of two colloidal particles in a cholesteric liquid crystal with tangential order parameter alignment at the particle surface. The effective force between the pair is attractive at short range and favors assembly of